Noisecut: a python package for noise-tolerant classification of binary data using prior knowledge integration and max-cut solutions

Author:

Samadi Moein E.,Mirzaieazar Hedieh,Mitsos Alexander,Schuppert Andreas

Abstract

Abstract Background Classification of binary data arises naturally in many clinical applications, such as patient risk stratification through ICD codes. One of the key practical challenges in data classification using machine learning is to avoid overfitting. Overfitting in supervised learning primarily occurs when a model learns random variations from noisy labels in training data rather than the underlying patterns. While traditional methods such as regularization and early stopping have demonstrated effectiveness in interpolation tasks, addressing overfitting in the classification of binary data, in which predictions always amount to extrapolation, demands extrapolation-enhanced strategies. One such approach is hybrid mechanistic/data-driven modeling, which integrates prior knowledge on input features into the learning process, enhancing the model’s ability to extrapolate. Results We present NoiseCut, a Python package for noise-tolerant classification of binary data by employing a hybrid modeling approach that leverages solutions of defined max-cut problems. In a comparative analysis conducted on synthetically generated binary datasets, NoiseCut exhibits better overfitting prevention compared to the early stopping technique employed by different supervised machine learning algorithms. The noise tolerance of NoiseCut stems from a dropout strategy that leverages prior knowledge of input features and is further enhanced by the integration of max-cut problems into the learning process. Conclusions NoiseCut is a Python package for the implementation of hybrid modeling for the classification of binary data. It facilitates the integration of mechanistic knowledge on the input features into learning from data in a structured manner and proves to be a valuable classification tool when the available training data is noisy and/or limited in size. This advantage is especially prominent in medical and biomedical applications where data scarcity and noise are common challenges. The codebase, illustrations, and documentation for NoiseCut are accessible for download at https://pypi.org/project/noisecut/. The implementation detailed in this paper corresponds to the version 0.2.1 release of the software.

Funder

Helmholtz Association

Universitätsklinikum RWTH Aachen

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3