DePicT Melanoma Deep-CLASS: a deep convolutional neural networks approach to classify skin lesion images

Author:

Nasiri Sara,Helsper Julien,Jung Matthias,Fathi Madjid

Abstract

Abstract Background Melanoma results in the vast majority of skin cancer deaths during the last decades, even though this disease accounts for only one percent of all skin cancers’ instances. The survival rates of melanoma from early to terminal stages is more than fifty percent. Therefore, having the right information at the right time by early detection with monitoring skin lesions to find potential problems is essential to surviving this type of cancer. Results An approach to classify skin lesions using deep learning for early detection of melanoma in a case-based reasoning (CBR) system is proposed. This approach has been employed for retrieving new input images from the case base of the proposed system DePicT Melanoma Deep-CLASS to support users with more accurate recommendations relevant to their requested problem (e.g., image of affected area). The efficiency of our system has been verified by utilizing the ISIC Archive dataset in analysis of skin lesion classification as a benign and malignant melanoma. The kernel of DePicT Melanoma Deep-CLASS is built upon a convolutional neural network (CNN) composed of sixteen layers (excluding input and ouput layers), which can be recursively trained and learned. Our approach depicts an improved performance and accuracy in testing on the ISIC Archive dataset. Conclusions Our methodology derived from a deep CNN, generates case representations for our case base to use in the retrieval process. Integration of this approach to DePicT Melanoma CLASS, significantly improving the efficiency of its image classification and the quality of the recommendation part of the system. The proposed method has been tested and validated on 1796 dermoscopy images. Analyzed results indicate that it is efficient on malignancy detection.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference44 articles.

1. Skin Cancer Facts & Statistics Melanoma. https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/\#melanoma. Accessed 31 Oct 2018.

2. Barnes B, Kraywinkel K, Nowossadeck E, Schönfeld I, Starker A, Wienecke A, Wolf U. Bericht zum krebsgeschehen in deutschland 2016: Robert Koch Institut; 2016, pp. 53–56.

3. American Cancer Society. Cancer Facts and Figures 2017. Genes Dev. 2017; 21(20):2525–38.

4. Coit DG, et al.NCCN Guidelines Insights: Melanoma, Version 3.2016. J Natl Compr Cancer Netw JNCCN. 2016; 14(8):945–58.

5. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542(7639):115–8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3