Drug-target interactions prediction using marginalized denoising model on heterogeneous networks

Author:

Tang ChunyanORCID,Zhong Cheng,Chen Danyang,Wang Jianyi

Abstract

Abstract Background Drugs achieve pharmacological functions by acting on target proteins. Identifying interactions between drugs and target proteins is an essential task in old drug repositioning and new drug discovery. To recommend new drug candidates and reposition existing drugs, computational approaches are commonly adopted. Compared with the wet-lab experiments, the computational approaches have lower cost for drug discovery and provides effective guidance in the subsequent experimental verification. How to integrate different types of biological data and handle the sparsity of drug-target interaction data are still great challenges. Results In this paper, we propose a novel drug-target interactions (DTIs) prediction method incorporating marginalized denoising model on heterogeneous networks with association index kernel matrix and latent global association. The experimental results on benchmark datasets and new compiled datasets indicate that compared to other existing methods, our method achieves higher scores of AUC (area under curve of receiver operating characteristic) and larger values of AUPR (area under precision-recall curve). Conclusions The performance improvement in our method depends on the association index kernel matrix and the latent global association. The association index kernel matrix calculates the sharing relationship between drugs and targets. The latent global associations address the false positive issue caused by network link sparsity. Our method can provide a useful approach to recommend new drug candidates and reposition existing drugs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3