Transfer posterior error probability estimation for peptide identification

Author:

Yi Xinpei,Gong Fuzhou,Fu YanORCID

Abstract

Abstract Background In shotgun proteomics, database searching of tandem mass spectra results in a great number of peptide-spectrum matches (PSMs), many of which are false positives. Quality control of PSMs is a multiple hypothesis testing problem, and the false discovery rate (FDR) or the posterior error probability (PEP) is the commonly used statistical confidence measure. PEP, also called local FDR, can evaluate the confidence of individual PSMs and thus is more desirable than FDR, which evaluates the global confidence of a collection of PSMs. Estimation of PEP can be achieved by decomposing the null and alternative distributions of PSM scores as long as the given data is sufficient. However, in many proteomic studies, only a group (subset) of PSMs, e.g. those with specific post-translational modifications, are of interest. The group can be very small, making the direct PEP estimation by the group data inaccurate, especially for the high-score area where the score threshold is taken. Using the whole set of PSMs to estimate the group PEP is inappropriate either, because the null and/or alternative distributions of the group can be very different from those of combined scores. Results The transfer PEP algorithm is proposed to more accurately estimate the PEPs of peptide identifications in small groups. Transfer PEP derives the group null distribution through its empirical relationship with the combined null distribution, and estimates the group alternative distribution, as well as the null proportion, using an iterative semi-parametric method. Validated on both simulated data and real proteomic data, transfer PEP showed remarkably higher accuracy than the direct combined and separate PEP estimation methods. Conclusions We presented a novel approach to group PEP estimation for small groups and implemented it for the peptide identification problem in proteomics. The methodology of the approach is in principle applicable to the small-group PEP estimation problems in other fields.

Funder

Key Technologies Research and Development Program

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3