InClust+: the deep generative framework with mask modules for multimodal data integration, imputation, and cross-modal generation
-
Published:2024-01-24
Issue:1
Volume:25
Page:
-
ISSN:1471-2105
-
Container-title:BMC Bioinformatics
-
language:en
-
Short-container-title:BMC Bioinformatics
Author:
Wang Lifei,Nie Rui,Miao Xuexia,Cai Yankai,Wang Anqi,Zhang Hanwen,Zhang Jiang,Cai Jun
Abstract
Abstract
Background
With the development of single-cell technology, many cell traits can be measured. Furthermore, the multi-omics profiling technology could jointly measure two or more traits in a single cell simultaneously. In order to process the various data accumulated rapidly, computational methods for multimodal data integration are needed.
Results
Here, we present inClust+, a deep generative framework for the multi-omics. It’s built on previous inClust that is specific for transcriptome data, and augmented with two mask modules designed for multimodal data processing: an input-mask module in front of the encoder and an output-mask module behind the decoder. InClust+ was first used to integrate scRNA-seq and MERFISH data from similar cell populations, and to impute MERFISH data based on scRNA-seq data. Then, inClust+ was shown to have the capability to integrate the multimodal data (e.g. tri-modal data with gene expression, chromatin accessibility and protein abundance) with batch effect. Finally, inClust+ was used to integrate an unlabeled monomodal scRNA-seq dataset and two labeled multimodal CITE-seq datasets, transfer labels from CITE-seq datasets to scRNA-seq dataset, and generate the missing modality of protein abundance in monomodal scRNA-seq data. In the above examples, the performance of inClust+ is better than or comparable to the most recent tools in the corresponding task.
Conclusions
The inClust+ is a suitable framework for handling multimodal data. Meanwhile, the successful implementation of mask in inClust+ means that it can be applied to other deep learning methods with similar encoder-decoder architecture to broaden the application scope of these models.
Funder
National Natural Science Foundation of China National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82. 2. Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, Kang B, Hu R, Huang JY, Zhang Q, et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell. 2017;169(7):1342–56. 3. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015;523(7561):486–90. 4. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, Andrews SR, Stegle O, Reik W, Kelsey G. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014;11(8):817–20. 5. Guo X, Zhang Y, Zheng L, Zheng C, Song J, Zhang Q, Kang B, Liu Z, Jin L, Xing R, et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med. 2018;24(7):978–85.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|