Intelligent fluorescence image analysis of giant unilamellar vesicles using convolutional neural network

Author:

Lee Il-HyungORCID,Passaro Sam,Ozturk Selin,Ureña Juan,Wang Weitian

Abstract

Abstract Background Fluorescence image analysis in biochemical science often involves the complex tasks of identifying samples for analysis and calculating the desired information from the intensity traces. Analyzing giant unilamellar vesicles (GUVs) is one of these tasks. Researchers need to identify many vesicles to statistically analyze the degree of molecular interaction or state of molecular organization on the membranes. This analysis is complicated, requiring a careful manual examination by researchers, so automating the analysis can significantly aid in improving its efficiency and reliability. Results We developed a convolutional neural network (CNN) assisted intelligent analysis routine based on the whole 3D z-stack images. The programs identify the vesicles with desired morphology and analyzes the data automatically. The programs can perform protein binding analysis on the membranes or state decision analysis of domain phase separation. We also show that the method can easily be applied to similar problems, such as intensity analysis of phase-separated protein droplets. CNN-based classification approach enables the identification of vesicles even from relatively complex samples. We demonstrate that the proposed artificial intelligence-assisted classification can further enhance the accuracy of the analysis close to the performance of manual examination in vesicle selection and vesicle state determination analysis. Conclusions We developed a MATLAB based software capable of efficiently analyzing confocal fluorescence image data of giant unilamellar vesicles. The program can automatically identify GUVs with desired morphology and perform intensity-based calculation and state decision for each vesicle. We expect our method of CNN implementation can be expanded and applied to many similar problems in image data analysis.

Funder

Montclair State University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3