Enhancing fragment-based protein structure prediction by customising fragment cardinality according to local secondary structure

Author:

Abbass JadORCID,Nebel Jean-Christophe

Abstract

Abstract Background Whenever suitable template structures are not available, usage of fragment-based protein structure prediction becomes the only practical alternative as pure ab initio techniques require massive computational resources even for very small proteins. However, inaccuracy of their energy functions and their stochastic nature imposes generation of a large number of decoys to explore adequately the solution space, limiting their usage to small proteins. Taking advantage of the uneven complexity of the sequence-structure relationship of short fragments, we adjusted the fragment insertion process by customising the number of available fragment templates according to the expected complexity of the predicted local secondary structure. Whereas the number of fragments is kept to its default value for coil regions, important and dramatic reductions are proposed for beta sheet and alpha helical regions, respectively. Results The evaluation of our fragment selection approach was conducted using an enhanced version of the popular Rosetta fragment-based protein structure prediction tool. It was modified so that the number of fragment candidates used in Rosetta could be adjusted based on the local secondary structure. Compared to Rosetta’s standard predictions, our strategy delivered improved first models, + 24% and + 6% in terms of GDT, when using 2000 and 20,000 decoys, respectively, while reducing significantly the number of fragment candidates. Furthermore, our enhanced version of Rosetta is able to deliver with 2000 decoys a performance equivalent to that produced by standard Rosetta while using 20,000 decoys. We hypothesise that, as the fragment insertion process focuses on the most challenging regions, such as coils, fewer decoys are needed to explore satisfactorily conformation spaces. Conclusions Taking advantage of the high accuracy of sequence-based secondary structure predictions, we showed the value of that information to customise the number of candidates used during the fragment insertion process of fragment-based protein structure prediction. Experimentations conducted using standard Rosetta showed that, when using the recommended number of decoys, i.e. 20,000, our strategy produces better results. Alternatively, similar results can be achieved using only 2000 decoys. Consequently, we recommend the adoption of this strategy to either improve significantly model quality or reduce processing times by a factor 10.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3