An effective correlation-based data modeling framework for automatic diabetes prediction using machine and deep learning techniques

Author:

Patro Kiran Kumar,Allam Jaya Prakash,Sanapala Umamaheswararao,Marpu Chaitanya Kumar,Samee Nagwan Abdel,Alabdulhafith Maali,Plawiak Pawel

Abstract

AbstractThe rising risk of diabetes, particularly in emerging countries, highlights the importance of early detection. Manual prediction can be a challenging task, leading to the need for automatic approaches. The major challenge with biomedical datasets is data scarcity. Biomedical data is often difficult to obtain in large quantities, which can limit the ability to train deep learning models effectively. Biomedical data can be noisy and inconsistent, which can make it difficult to train accurate models. To overcome the above-mentioned challenges, this work presents a new framework for data modeling that is based on correlation measures between features and can be used to process data effectively for predicting diabetes. The standard, publicly available Pima Indians Medical Diabetes (PIMA) dataset is utilized to verify the effectiveness of the proposed techniques. Experiments using the PIMA dataset showed that the proposed data modeling method improved the accuracy of machine learning models by an average of 9%, with deep convolutional neural network models achieving an accuracy of 96.13%. Overall, this study demonstrates the effectiveness of the proposed strategy in the early and reliable prediction of diabetes.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference57 articles.

1. Federation I. Idf diabetes atlas eighth edition 2019. international diabetes federation. idf diabetes atlas, 9th edn. brussels. Belgium: International Diabetes Federation; 2019.

2. World Health Organization. Diabetes. Accessed 24 July 2023.

3. Jeffcoate W, Bakker K. World diabetes day: footing the bill. The Lancet. 2005;365(9470):1527.

4. Miah MBA, Yousuf MA. Analysis the significant risk factors on type 2 diabetes perspective of Bangladesh. Diabetes Metab Syndr. 2018;12(6):897–902.

5. Tao Z, Shi A, Zhao J. Epidemiological perspectives of diabetes. Cell Biochem Biophys. 2015;73:181–5.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3