CastNet: a systems-level sequence evolution simulator

Author:

Rivera-Rivera Carlos J.,Grbic Djordje

Abstract

Abstract Background Simulating DNA evolution has been done through coevolution-agnostic probabilistic frameworks for the past 3 decades. The most common implementation is by using the converse of the probabilistic approach used to infer phylogenies which, in the simplest form, simulates a single sequence at a time. However, biological systems are multi-genic, and gene products can affect each other’s evolutionary paths through coevolution. These crucial evolutionary dynamics still remain to be simulated, and we believe that modelling them can lead to profound insights for comparative genomics. Results Here we present CastNet, a genome evolution simulator that assumes each genome is a collection of genes with constantly evolving regulatory interactions in between them. The regulatory interactions produce a phenotype in the form of gene expression profiles, upon which fitness is calculated. A genetic algorithm is then used to evolve a population of such entities through a user-defined phylogeny. Importantly, the regulatory mutations are a response to sequence mutations, thus making a 1–1 relationship between the rate of evolution of sequences and of regulatory parameters. This is, to our knowledge, the first time the evolution of sequences and regulation have been explicitly linked in a simulation, despite there being a multitude of sequence evolution simulators, and a handful of models to simulate Gene Regulatory Network (GRN) evolution. In our test runs, we see a coevolutionary signal among genes that are active in the GRN, and neutral evolution in genes that are not included in the network, showing that selective pressures imposed on the regulatory output of the genes are reflected in their sequences. Conclusion We believe that CastNet represents a substantial step for developing new tools to study genome evolution, and more broadly, coevolutionary webs and complex evolving systems. This simulator also provides a new framework to study molecular evolution where sequence coevolution has a leading role.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3