Abstract
Abstract
Background
MicroRNAs are a class of important small noncoding RNAs, which have been reported to be involved in the processes of tumorigenesis and development by targeting a few genes. Existing studies show that the imbalance between cell proliferation and apoptosis is closely related to the initiation and development of cancers. However, the impact of miRNAs on this imbalance has not been studied systematically.
Results
In this study, we first construct a cell fate miRNA-gene regulatory network. Then, we propose a systematical method for calculating the global impact of miRNAs on cell fate genes based on the shortest path. Results on breast cancer and liver cancer datasets show that most of the cell fate genes are perturbed by the differentially expressed miRNAs. Most of the top-identified miRNAs are verified in the Human MicroRNA Disease Database (HMDD) and are related to breast and liver cancers. Function analysis shows that the top 20 miRNAs regulate multiple cell fate related function modules and interact tightly based on their functional similarity. Furthermore, more than half of them can promote sensitivity or induce resistance to some anti-cancer drugs. Besides, survival analysis demonstrates that the top-ranked miRNAs are significantly related to the overall survival time in the breast and liver cancers group.
Conclusion
In sum, this study can help to systematically study the important role of miRNAs on proliferation and apoptosis and thereby uncover the key miRNAs during the process of tumorigenesis. Furthermore, the results of this study will contribute to the development of clinical therapy based miRNAs for cancers.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference52 articles.
1. Bandyopadhyay S, Mitra R, Maulik U, Zhang MQ. Development of the human cancer microRNA network. Silence. 2010;1(1):6.
2. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.
3. Hata A, Lieberman J. Dysregulation of microRNA biogenesis and gene silencing in cancer. Sci Sig. 2015;8(368):re3-re3.
4. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–79.
5. Xu P, Wu Q, Yu J, Rao Y, Kou Z, Fang G, Shi X, Liu W, Han H. A systematic way to infer the regulation relations of miRNAs on target genes and critical miRNAs in cancers. Front Genet. 2020;11:278.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献