Avoiding background knowledge: literature based discovery from important information

Author:

Preiss JuditaORCID

Abstract

AbstractBackgroundAutomatic literature based discovery attempts to uncover new knowledge by connecting existing facts: information extracted from existing publications in the form of$$A \rightarrow B$$ABand$$B \rightarrow C$$BCrelations can be simply connected to deduce$$A \rightarrow C$$AC. However, using this approach, the quantity of proposed connections is often too vast to be useful. It can be reduced by using subject$$\rightarrow$$(predicate)$$\rightarrow$$object triples as the$$A \rightarrow B$$ABrelations, but too many proposed connections remain for manual verification.ResultsBased on the hypothesis that only a small number of subject–predicate–object triples extracted from a publication represent the paper’s novel contribution(s), we explore using BERT embeddings to identify these before literature based discovery is performed utilizing only these, important, triples. While the method exploits the availability of full texts of publications in the CORD-19 dataset—making use of the fact that a novel contribution is likely to be mentioned in both an abstract and the body of a paper—to build a training set, the resulting tool can be applied to papers with only abstracts available. Candidate hidden knowledge pairs generated from unfiltered triples and those built from important triples only are compared using a variety of timeslicing gold standards.ConclusionsThe quantity of proposed knowledge pairs is reduced by a factor of$$10^3$$103, and we show that when the gold standard is designed to avoid rewarding background knowledge, the precision obtained increases up to a factor of 10. We argue that the gold standard needs to be carefully considered, and release as yet undiscovered candidate knowledge pairs based on important triples alongside this work.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3