CausNet: generational orderings based search for optimal Bayesian networks via dynamic programming with parent set constraints

Author:

Sharma Nand,Millstein Joshua

Abstract

Abstract Background Finding a globally optimal Bayesian Network using exhaustive search is a problem with super-exponential complexity, which severely restricts the number of variables that can feasibly be included. We implement a dynamic programming based algorithm with built-in dimensionality reduction and parent set identification. This reduces the search space substantially and can be applied to large-dimensional data. We use what we call ‘generational orderings’ based search for optimal networks, which is a novel way to efficiently search the space of possible networks given the possible parent sets. The algorithm supports both continuous and categorical data, as well as continuous, binary and survival outcomes. Results We demonstrate the efficacy of our algorithm on both synthetic and real data. In simulations, our algorithm performs better than three state-of-art algorithms that are currently used extensively. We then apply it to an Ovarian Cancer gene expression dataset with 513 genes and a survival outcome. Our algorithm is able to find an optimal network describing the disease pathway consisting of 6 genes leading to the outcome node in just 3.4 min on a personal computer with a 2.3 GHz Intel Core i9 processor with 16 GB RAM. Conclusions Our generational orderings based search for optimal networks is both an efficient and highly scalable approach for finding optimal Bayesian Networks and can be applied to 1000 s of variables. Using specifiable parameters—correlation, FDR cutoffs, and in-degree—one can increase or decrease the number of nodes and density of the networks. Availability of two scoring option—BIC and Bge—and implementation for survival outcomes and mixed data types makes our algorithm very suitable for many types of high dimensional data in a variety of fields.

Funder

Division of Cancer Epidemiology and Genetics, National Cancer Institute

National Institute on Aging

National Institute of Child Health and Human Development

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3