Impact of adaptive filtering on power and false discovery rate in RNA-seq experiments

Author:

Zehetmayer SonjaORCID,Posch Martin,Graf Alexandra

Abstract

Abstract Background In RNA-sequencing studies a large number of hypothesis tests are performed to compare the differential expression of genes between several conditions. Filtering has been proposed to remove candidate genes with a low expression level which may not be relevant and have little or no chance of showing a difference between conditions. This step may reduce the multiple testing burden and increase power. Results We show in a simulation study that filtering can lead to some increase in power for RNA-sequencing data, too aggressive filtering, however, can lead to a decline. No uniformly optimal filter in terms of power exists. Depending on the scenario different filters may be optimal. We propose an adaptive filtering strategy which selects one of several filters to maximise the number of rejections. No additional adjustment for multiplicity has to be included, but a rule has to be considered if the number of rejections is too small. Conclusions For a large range of simulation scenarios, the adaptive filter maximises the power while the simulated False Discovery Rate is bounded by the pre-defined significance level. Using the adaptive filter, it is not necessary to pre-specify a single individual filtering method optimised for a specific scenario.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3