Author:
Li Ke,Zhang Sijia,Yan Di,Bin Yannan,Xia Junfeng
Abstract
Abstract
Background
Identification of hot spots in protein-DNA interfaces provides crucial information for the research on protein-DNA interaction and drug design. As experimental methods for determining hot spots are time-consuming, labor-intensive and expensive, there is a need for developing reliable computational method to predict hot spots on a large scale.
Results
Here, we proposed a new method named sxPDH based on supervised isometric feature mapping (S-ISOMAP) and extreme gradient boosting (XGBoost) to predict hot spots in protein-DNA complexes. We obtained 114 features from a combination of the protein sequence, structure, network and solvent accessible information, and systematically assessed various feature selection methods and feature dimensionality reduction methods based on manifold learning. The results show that the S-ISOMAP method is superior to other feature selection or manifold learning methods. XGBoost was then used to develop hot spots prediction model sxPDH based on the three dimensionality-reduced features obtained from S-ISOMAP.
Conclusion
Our method sxPDH boosts prediction performance using S-ISOMAP and XGBoost. The AUC of the model is 0.773, and the F1 score is 0.713. Experimental results on benchmark dataset indicate that sxPDH can achieve generally better performance in predicting hot spots compared to the state-of-the-art methods.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献