A flexible network-based imputing-and-fusing approach towards the identification of cell types from single-cell RNA-seq data

Author:

Qi Yang,Guo Yang,Jiao Huixin,Shang Xuequn

Abstract

Abstract Background Single-cell RNA sequencing (scRNA-seq) provides an effective tool to investigate the transcriptomic characteristics at the single-cell resolution. Due to the low amounts of transcripts in single cells and the technical biases in experiments, the raw scRNA-seq data usually includes large noise and makes the downstream analyses complicated. Although many methods have been proposed to impute the noisy scRNA-seq data in recent years, few of them take into account the prior associations across genes in imputation and integrate multiple types of imputation data to identify cell types. Results We present a new framework, NetImpute, towards the identification of cell types from scRNA-seq data by integrating multiple types of biological networks. We employ a statistic method to detect the noise data items in scRNA-seq data and develop a new imputation model to estimate the real values of data noise by integrating the PPI network and gene pathways. Meanwhile, based on the data imputed by multiple types of biological networks, we propose an integrated approach to identify cell types from scRNA-seq data. Comprehensive experiments demonstrate that the proposed network-based imputation model can estimate the real values of noise data items accurately and integrating the imputation data based on multiple types of biological networks can improve the identification of cell types from scRNA-seq data. Conclusions Incorporating the prior gene associations in biological networks can potentially help to improve the imputation of noisy scRNA-seq data and integrating multiple types of network-based imputation data can enhance the identification of cell types. The proposed NetImpute provides an open framework for incorporating multiple types of biological network data to identify cell types from scRNA-seq data.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3