Author:
Huang Dan,An JiYong,Zhang Lei,Liu BaiLong
Abstract
AbstractBackgroundA large number of evidences from biological experiments have confirmed that miRNAs play an important role in the progression and development of various human complex diseases. However, the traditional experiment methods are expensive and time-consuming. Therefore, it is a challenging task that how to develop more accurate and efficient methods for predicting potential associations between miRNA and disease.ResultsIn the study, we developed a computational model that combined heterogeneous graph convolutional network with enhanced layer for miRNA–disease association prediction (HGCNELMDA). The major improvement of our method lies in through restarting the random walk optimized the original features of nodes and adding a reinforcement layer to the hidden layer of graph convolutional network retained similar information between nodes in the feature space. In addition, the proposed approach recalculated the influence of neighborhood nodes on target nodes by introducing the attention mechanism. The reliable performance of the HGCNELMDA was certified by the AUC of 93.47% in global leave-one-out cross-validation (LOOCV), and the average AUCs of 93.01% in fivefold cross-validation. Meanwhile, we compared the HGCNELMDA with the state‑of‑the‑art methods. Comparative results indicated that o the HGCNELMDA is very promising and may provide a cost‑effective alternative for miRNA–disease association prediction. Moreover, we applied HGCNELMDA to 3 different case studies to predict potential miRNAs related to lung cancer, prostate cancer, and pancreatic cancer. Results showed that 48, 50, and 50 of the top 50 predicted miRNAs were supported by experimental association evidence. Therefore, the HGCNELMDA is a reliable method for predicting disease-related miRNAs.ConclusionsThe results of the HGCNELMDA method in the LOOCV (leave-one-out cross validation, LOOCV) and 5-cross validations were 93.47% and 93.01%, respectively. Compared with other typical methods, the performance of HGCNELMDA is higher. Three cases of lung cancer, prostate cancer, and pancreatic cancer were studied. Among the predicted top 50 candidate miRNAs, 48, 50, and 50 were verified in the biological database HDMMV2.0. Therefore; this further confirms the feasibility and effectiveness of our method. Therefore, this further confirms the feasibility and effectiveness of our method. To facilitate extensive studies for future disease-related miRNAs research, we developed a freely available web server called HGCNELMDA is available athttp://124.221.62.44:8080/HGCNELMDA.jsp.
Funder
Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference45 articles.
1. Huang HY, Lin YCD, Li J, Huang KY, Shrestha S, Hong HC, et al. miRTarBase 2020: updates to the experimentally valid-ted microRNA–target interaction database. Nucleic Acids Res. 2020;2020:145–8.
2. Leland H. Genetics: from gene to genomes. New York: McGraw-Hill Higher Education; 2021.
3. Cantile M, Di BM, Tracey DBM, et al. Functional interaction among lncRNA HOTAIR and microRNAs in cancer and other human diseases. Cancers. 2021;13(3):570.
4. Shefa U, Jung JY. Comparative study of microarray and experimental data on Schwann cells in peripheral nerve degeneration and regeneration: big data analysis. Neural Regen Res. 2019;14(6):1099.
5. Zhang H, Liang Y, Han SY, Peng C, Li Y. Long noncoding RNA and protein interactions: from experimental results to computational models based on network methods. Int J Mol Sci. 2019;20(6):1284.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献