Computational method using heterogeneous graph convolutional network model combined with reinforcement layer for MiRNA–disease association prediction

Author:

Huang Dan,An JiYong,Zhang Lei,Liu BaiLong

Abstract

AbstractBackgroundA large number of evidences from biological experiments have confirmed that miRNAs play an important role in the progression and development of various human complex diseases. However, the traditional experiment methods are expensive and time-consuming. Therefore, it is a challenging task that how to develop more accurate and efficient methods for predicting potential associations between miRNA and disease.ResultsIn the study, we developed a computational model that combined heterogeneous graph convolutional network with enhanced layer for miRNA–disease association prediction (HGCNELMDA). The major improvement of our method lies in through restarting the random walk optimized the original features of nodes and adding a reinforcement layer to the hidden layer of graph convolutional network retained similar information between nodes in the feature space. In addition, the proposed approach recalculated the influence of neighborhood nodes on target nodes by introducing the attention mechanism. The reliable performance of the HGCNELMDA was certified by the AUC of 93.47% in global leave-one-out cross-validation (LOOCV), and the average AUCs of 93.01% in fivefold cross-validation. Meanwhile, we compared the HGCNELMDA with the state‑of‑the‑art methods. Comparative results indicated that o the HGCNELMDA is very promising and may provide a cost‑effective alternative for miRNA–disease association prediction. Moreover, we applied HGCNELMDA to 3 different case studies to predict potential miRNAs related to lung cancer, prostate cancer, and pancreatic cancer. Results showed that 48, 50, and 50 of the top 50 predicted miRNAs were supported by experimental association evidence. Therefore, the HGCNELMDA is a reliable method for predicting disease-related miRNAs.ConclusionsThe results of the HGCNELMDA method in the LOOCV (leave-one-out cross validation, LOOCV) and 5-cross validations were 93.47% and 93.01%, respectively. Compared with other typical methods, the performance of HGCNELMDA is higher. Three cases of lung cancer, prostate cancer, and pancreatic cancer were studied. Among the predicted top 50 candidate miRNAs, 48, 50, and 50 were verified in the biological database HDMMV2.0. Therefore; this further confirms the feasibility and effectiveness of our method. Therefore, this further confirms the feasibility and effectiveness of our method. To facilitate extensive studies for future disease-related miRNAs research, we developed a freely available web server called HGCNELMDA is available athttp://124.221.62.44:8080/HGCNELMDA.jsp.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3