An integrated strategy for target SSR genotyping with toleration of nucleotide variations in the SSRs and flanking regions

Author:

Huo Yongxue,Zhao YikunORCID,Xu Liwen,Yi Hongmei,Zhang Yunlong,Jia XianqingORCID,Zhao Han,Zhao Jiuran,Wang FenggeORCID

Abstract

Abstract Background With the broad application of high-throughput sequencing and its reduced cost, simple sequence repeat (SSR) genotyping by sequencing (SSR-GBS) has been widely used for interpreting genetic data across different fields, including population genetic diversity and structure analysis, the construction of genetic maps, and the investigation of intraspecies relationships. The development of accurate and efficient typing strategies for SSR-GBS is urgently needed and several tools have been published. However, to date, no suitable accurate genotyping method can tolerate single nucleotide variations (SNVs) in SSRs and flanking regions. These SNVs may be caused by PCR and sequencing errors or SNPs among varieties, and they directly affect sequence alignment and genotyping accuracy. Results Here, we report a new integrated strategy named the accurate microsatellite genotyping tool based on targeted sequencing (AMGT-TS) and provide a user-friendly web-based platform and command-line version of AMGT-TS. To handle SNVs in the SSRs or flanking regions, we developed a broad matching algorithm (BMA) that can quickly and accurately achieve SSR typing for ultradeep coverage and high-throughput analysis of loci with SNVs compatibility and grouping of typed reads for further in-depth information mining. To evaluate this tool, we tested 21 randomly sampled loci in eight maize varieties, accompanied by experimental validation on actual and simulated sequencing data. Our evaluation showed that, compared to other tools, AMGT-TS presented extremely accurate typing results with single base resolution for both homozygous and heterozygous samples. Conclusion This integrated strategy can achieve accurate SSR genotyping based on targeted sequencing, and it can tolerate single nucleotide variations in the SSRs and flanking regions. This method can be readily applied to divergent sequencing platforms and species and has excellent application prospects in genetic and population biology research. The web-based platform and command-line version of AMGT-TS are available at https://amgt-ts.plantdna.site:8445 and https://github.com/plantdna/amgt-ts, respectively.

Funder

13th Five-Year National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3