Abstract
Abstract
Background
The recent advances in human disease network have provided insights into establishing the relationships between the genotypes and phenotypes of diseases. In spite of the great progress, it yet remains as only a map of topologies between diseases, but not being able to be a pragmatic diagnostic/prognostic tool in medicine. It can further evolve from a map to a translational tool if it equips with a function of scoring that measures the likelihoods of the association between diseases. Then, a physician, when practicing on a patient, can suggest several diseases that are highly likely to co-occur with a primary disease according to the scores. In this study, we propose a method of implementing ‘n-of-1 utility’ (n potential diseases of one patient) to human disease network—the translational disease network.
Results
We first construct a disease network by introducing the notion of walk in graph theory to protein-protein interaction network, and then provide a scoring algorithm quantifying the likelihoods of disease co-occurrence given a primary disease. Metabolic diseases, that are highly prevalent but have found only a few associations in previous studies, are chosen as entries of the network.
Conclusions
The proposed method substantially increased connectivity between metabolic diseases and provided scores of co-occurring diseases. The increase in connectivity turned the disease network info-richer. The result lifted the AUC of random guessing up to 0.72 and appeared to be concordant with the existing literatures on disease comorbidity.
Funder
Korea Centers for Disease Control and Prevention
Ministry of Education
Ministry of Education, Science and Technology
Ajou University
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献