Author:
Steward Katherine F.,Refai Mohammed,Dyer William E.,Copié Valérie,Lachowiec Jennifer,Bothner Brian
Abstract
Abstract
Background
Variation in omics data due to intrinsic biological stochasticity is often viewed as a challenging and undesirable feature of complex systems analyses. In fact, numerous statistical methods are utilized to minimize the variation among biological replicates.
Results
We demonstrate that the common statistics relative standard deviation (RSD) and coefficient of variation (CV), which are often used for quality control or part of a larger pipeline in omics analyses, can also be used as a metric of a physiological stress response. Using an approach we term Replicate Variation Analysis (RVA), we demonstrate that acute physiological stress leads to feature-wide canalization of CV profiles of metabolomes and proteomes across biological replicates. Canalization is the repression of variation between replicates, which increases phenotypic similarity. Multiple in-house mass spectrometry omics datasets in addition to publicly available data were analyzed to assess changes in CV profiles in plants, animals, and microorganisms. In addition, proteomics data sets were evaluated utilizing RVA to identify functionality of reduced CV proteins.
Conclusions
RVA provides a foundation for understanding omics level shifts that occur in response to cellular stress. This approach to data analysis helps characterize stress response and recovery, and could be deployed to detect populations under stress, monitor health status, and conduct environmental monitoring.
Funder
U.S. Department of Energy
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology