Eggshell membrane and green seaweed (Ulva lactuca) micronized powders for in vivo diabetic wound healing in albino rats: a comparative study

Author:

Moustafa Moustafa H.ORCID,Turkey Mohamed S.ORCID,Mohamedin Noha S.ORCID,Darwish Amira A.ORCID,Elshal Amira A. M.ORCID,Yehia Mona A. H.ORCID,El Safwany Mohamed M.ORCID,Mohamed Ehab I.ORCID

Abstract

Abstract Background Nonhealing diabetic wounds are a serious complication associated with extremely lethargic wound closure and a high risk of infection, leading to amputation or limb loss, as well as substantial health care costs and a poor quality of life for the patient. The effects of either eggshell membrane (ESM) and green seaweed (Ulva lactuca) extracts alone or in combination were evaluated for in vivo skin wound healing in a rat model of induced diabetes. Methods Micronized powders of waste hen ESM, Ulva lactuca, and their 1:1 mixture were prepared using regular procedures. The mechanical, electrical, and surface morphology characteristics of powders were examined using direct compression, LCR-impedancemetry, and scanning electron microscopy. The effect of ESM, Ulva lactuca, and their mixture as compared to standard Dermazin treatments were evaluated on wounds inflicted on male Wistar Albino rats with induced diabetes. Quantitative wound healing rates at baseline and at 3, 7, 14, and 21 days of treatments among all rat groups were conducted using ANOVA. Qualitative histological analysis of epidermal re-epithelization, keratinocytes, basement membrane, infiltrating lymphocytes, collagen fibrines, and blood vessels at day 21 were performed using Image J processing program. Results Compressive strength measurements of tablets showed a Young’s modulus of 44.14 and 27.17 MPa for the ESM and ESM + Ulva lactuca mixture, respectively. Moreover, both samples exhibited relatively low relative permittivity values of 6.62 and 6.95 at 1 MHz, respectively, due to the porous surface morphology of ESM shown by scanning electron microscopy. On day 21, rats treated with ESM had a complete diabetic wound closure, hair regrowth, and a healing rate of 99.49%, compared to 96.79% for Dermazin, 87.05% for Ulva lactuca, 90.23% for the mixture, and only 36.44% for the negative controls. A well-formed basement membrane, well-differentiated epithelial cells, and regular thick keratinocytes lining the surface of the epidermal cells accompanied wound healing in rats treated with ESM, which was significantly better than in control rats. Conclusion Ground hen ESM powder, a low-cost effective biomaterial, is better than Ulva lactuca or their mixture for preventing tissue damage and promoting diabetic wound healing, in addition to various biomedical applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3