Pharmacokinetics of caffeine self-administered in overdose in a Japanese patient admitted to hospital

Author:

Adachi Koichiro,Beppu Satoru,Terashima Mariko,Fukuda Toshiaki,Tomizawa Jun,Shimizu Makiko,Yamazaki HiroshiORCID

Abstract

Abstract Background Caffeine (0.1 g) is used as a central nervous system stimulant and as a nontoxic phenotyping probe for cytochrome P450 1A2. However, an increasing number of suicide attempts by caffeine overdose have been recently reported. Case presentation A 25-year-old woman (body weight, 43 kg) who intentionally took an overdose of 5.9 g caffeine as a suicide attempt was emergently admitted to Kyoto Medical Center. The plasma concentrations of caffeine and its primary metabolite, N-demethylated paraxanthine, in the current case were 100 and 7.3 μg/mL, 81 and 9.9 μg/mL, 63 and 12 μg/mL, and 21 and 14 μg/mL, at 12, 20, 30, and 56 h after oral overdose, respectively. The observed apparent terminal elimination half-life of caffeine during days 1 and 2 of hospitalization was 27 h, which is several times longer than the reported normal value. This finding implied nonlinearity of caffeine pharmacokinetics over such a wide dose range, which could affect the accuracy of values simulated by a simplified physiologically based pharmacokinetic model founded on a normal dose of 100 mg. Low serum potassium levels (2.9 and 3.5 mM) on days 1 and 2 may have been caused by the caffeine overdose in the current case. Conclusions The patient underwent infusion with bicarbonate Ringer’s solution and potassium chloride and was discharged on the third day of hospitalization despite taking a potentially lethal dose of caffeine. The virtual plasma exposures of caffeine estimated using the current simplified PBPK model were higher than the measured values. The present results based on drug monitoring data and additional pharmacokinetic predictions could serve as a useful guide in cases of caffeine overdose.

Funder

meti japan

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology (nursing)

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3