Author:
Nucera Riccardo,Giudice Antonino Lo,Matarese Giovanni,Artemisia Alessandro,Bramanti Ennio,Crupi Paolo,Cordasco Giancarlo
Abstract
Abstract
Background
During orthodontic treatment, a low resistance to slide (RS) is desirable when sliding mechanics are used. Many studies showed that several variables affect the RS at the bracket-wire interface; among these, the design of the bracket slot has not been deeply investigated yet. This study aimed to clarify the effect of different slot designs on the RS expressed by five types of low-friction brackets in vertical and horizontal active configurations of the wire.
Methods
Five low-friction brackets (Damon SL II, Ormco, Orange, CA, USA; In-Ovation, GAC International, Bohemia, NY, USA; Quick, Forestadent, Pforzheim, Germany; Time 2, AO, Sheboygan, WI, USA; Synergy, RMO, Denver, CO, USA) coupled with an 0.014-in NiTi thermal wire (Therma-Lite, AO) were tested in two three-bracket experimental models simulating vertical and horizontal bracket displacements. A custom-made machine was used to measure frictional resistance with tests repeated on ten occasions for each bracket-wire combination. Design characteristics such as the mesio-distal slot width, slot depth, and presence of chamfered edges at the extremities of the slot were evaluated on SEM images (SUPRA, Carl Zeiss, Oberkochen, Germany) and analyzed in relation to the data of RS recorded.
Results
Time 2 was found to show the higher frictional forces (1.50 and 1.35 N) in both experimental models (p < 0.05), while Quick and Synergy brackets showed the lower frictional values in the vertical (0.66 N) and in the horizontal (0.68 N) bracket displacements, respectively. With vertically displaced brackets, the increased mesio-distal slot width and the presence of clear angle at mesial and distal slot edges increase the values of RS. With brackets horizontally displaced, the RS expressed by the wire is influenced simultaneously by the depth of the slot, the mesio-distal slot width, and the presence of clear angle at the extremities of the slot base, the clip, or the slide.
Conclusion
In order to select the proper low-friction bracket system, clinicians should consider specific characteristics of slot design apart from the wire engaging method.
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Dowling PA, Jones WB, Lagerstrom L, Sandham JA: An investigation into the behavioural characteristics of orthodontic elastomeric modules. Br J Orthod. 1998, 25: 197–202. 10.1093/ortho/25.3.197
2. Kusy RP, Whitley JQ: Friction between different wire-bracket configurations and materials. Semin Orthod. 1997, 3: 166–77. 10.1016/S1073-8746(97)80067-9
3. Cordasco G, Lo Giudice A, Militi A, Nucera R, Triolo G, Matarese G: In vitro evaluation of resistance to sliding produced by self-ligating and conventional ligation methods during dental alignment. Korean J Orthod 2012,42(4):218–24. 10.4041/kjod.2012.42.4.218
4. Kusy RP: Ongoing innovations in biomechanics and materials for the new millennium. Angle Orthod. 2000, 70: 366–76.
5. Yeh CL, Kusnoto B, Viana G, Evans CA, Drummond JL: In-vitro evaluation of frictional resistance between brackets with passive-ligation designs. Am J Orthod Dentofacial Orthop 2007, 131: 704.e 11–704.e22.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献