Author:
Deli Roberto,Galantucci Luigi M,Laino Alberto,D’Alessio Raoul,Di Gioia Eliana,Savastano Carmela,Lavecchia Fulvio,Percoco Gianluca
Abstract
Abstract
Background
The objective of this study is to define an acquisition protocol that is clear, precise, repeatable, simple, fast and that is useful for analysis of the anthropometric characteristics of the soft tissue of the face.
Methods
The analysis was carried out according to a new clinical-instrumental protocol that comprises four distinct phases: (1) setup of portable equipment in the space in which field analysis will be performed, (2) preparation of the subject and spatial positioning, (3) scanning of the subject with different facial expressions, and (4) treatment and processing of data. The protocol was tested on a sample comprising 66 female subjects (64 Caucasian, 1 Ethiopian, and 1 Brazilian) who were the finalists of an Italian national beauty contest in 2010. To illustrate the potential of the method, we report here the measurements and full analysis that were carried out on the facial model of one of the subjects who was scanned.
Results
This new protocol for the acquisition of faces is shown to be fast (phase 1, about 1 h; phase 2, about 1.5 min; phase 3, about 1.5 min; phase 4, about 15 min), simple (phases 1 to 3 requiring a short operator training period; only phase 4 requires expert operators), repeatable (with direct palpation of anatomical landmarks and marking of their positions on the face, the problem of identification of these same landmarks on the digital model is solved), reliable and precise (average precision of measurements, 0.5 to 0.6 mm over the entire surface of the face).
Conclusions
This standardization allows the mapping of the subjects to be carried out following the same conditions in a reliable and fast process for all of the subjects scanned.
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Primozic J, Perinetti G, Zhurov A, Richmond S, Ovsenik M: Assessment of facial asymmetry in growing subjects with a three-dimensional laser scanning system. Orthod Craniofac Res 2012, 15: 237–44. 10.1111/j.1601-6343.2012.01550.x
2. Primozic J, Perinetti G, Richmond S, Ovsenik M: Three-dimensional evaluation of facial asymmetry in association with unilateral functional crossbite in the primary, early, and late mixed dentition phases. Angle Orthod 2013, 83: 253–8. 10.2319/041012-299.1
3. Galantucci LM: New challenges for reverse engineering in facial treatments: how can the new 3-D noninvasive surface measurements support diagnosis and treatment? In Innovative Development in Design and Manufacturing. Edited by: Bártolo PJ, Jorge MA, da Conceicao Batista F, Amorim Almeida H, Matias JM, Correia Vasco J, Brites Gaspar J, Correia MA, Carpinteiro Andre N, Fernandes Alves N, Parente Novo P, Goncalves Martinho P, Carvalho RA. London: Taylor & Francis Group; 2010:3–12.
4. Varady T, Martin RR, Cox J: Reverse engineering of geometric models-an introduction. Comput Aided Des. 1997, 4: 255–68.
5. Introna F, De Donno A, Santoro V, Corrado S, Romano V, Porcelli F, Campobasso CP: The bodies of two missing children in an enclosed underground environment. Forensic Sci Int 2011, 207: e40–7. 10.1016/j.forsciint.2010.12.007
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献