Quantification of blood flow in the fetus with cardiovascular magnetic resonance imaging using Doppler ultrasound gating: validation against metric optimized gating
-
Published:2019-11-28
Issue:1
Volume:21
Page:
-
ISSN:1532-429X
-
Container-title:Journal of Cardiovascular Magnetic Resonance
-
language:en
-
Short-container-title:J Cardiovasc Magn Reson
Author:
Salehi Daniel,
Sun Liqun,
Steding-Ehrenborg Katarina,
Bidhult Sebastian,
Kording Fabian,
Ruprecht Christian,
Macgowan Christopher K.,
Seed Michael,
Aletras Anthony H.,
Arheden Håkan,
Hedström ErikORCID
Abstract
Abstract
Introduction
Fetal cardiovascular magnetic resonance (CMR) imaging is used clinically and for research, but has been previously limited due to lack of direct gating methods. A CMR-compatible Doppler ultrasound (DUS) gating device has resolved this. However, the DUS-gating method is not validated against the current reference method for fetal phase-contrast blood flow measurements, metric optimized gating (MOG). Further, we investigated how different methods for vessel delineation affect flow volumes and observer variability in fetal flow acquisitions.
Aims
To 1) validate DUS gating versus MOG for quantifying fetal blood flow; 2) assess repeatability of DUS gating; 3) assess impact of region of interest (ROI) size on flow volume; and 4) compare time-resolved and static delineations for flow volume and observer variability.
Methods
Phase-contrast CMR was acquired in the fetal descending aorta (DAo) and umbilical vein by DUS gating and MOG in 22 women with singleton pregnancy in gestational week 360 (265–400) with repeated scans in six fetuses. Impact of ROI size on measured flow was assessed for ROI:s 50–150% of the vessel diameter. Four observers from two centers provided time-resolved and static delineations. Bland-Altman analysis was used to determine agreement between both observers and methods.
Results
DAo flow was 726 (348–1130) ml/min and umbilical vein flow 366 (150–782) ml/min by DUS gating. Bias±SD for DUS-gating versus MOG were − 45 ± 122 ml/min (−6 ± 15%) for DAo and 19 ± 136 ml/min (2 ± 24%) for umbilical vein flow. Repeated flow measurements in the same fetus showed similar volumes (median CoV = 11% (DAo) and 23% (umbilical vein)). Region of interest 50–150% of vessel diameter yielded flow 35–120%. Bias±SD for time-resolved versus static DUS-gated flow was 33 ± 39 ml/min (4 ± 6%) for DAo and 11 ± 84 ml/min (2 ± 15%) for umbilical vein flow.
Conclusions
Quantification of blood flow in the fetal DAo and umbilical vein using DUS-gated phase-contrast CMR is feasible and agrees with the current reference method. Repeatability was generally high for CMR fetal blood flow assessment. An ROI similar to the vessel area or slightly larger is recommended. A static ROI is sufficient for fetal flow quantification using currently available CMR sequences.
Funder
Skane University Hospital Lund
Region Skåne
Southern Healthcare Region of Sweden
Medicinska Fakulteten, Lunds Universitet
Hjärt-Lungfonden
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Reference28 articles.
1. Kording F, Yamamura J, De Sousa MT, Ruprecht C, Hedström E, Aletras AH, et al. Dynamic fetal cardiovascular magnetic resonance imaging using Doppler ultrasound gating. J Cardiovasc Magn Reson. 2018;20(1):1–10.
2. Haris K, Hedström E, Bidhult S, Testud F, Maglaveras N, Heiberg E, et al. Self-gated fetal cardiac MRI with tiny golden angle iGRASP: a feasibility study. J Magn Reson Imaging. 2017;46(1):207–17.
3. Zhu M. Fetal cardiac MRI. J Cardiovasc Magn Reson. 2015;17(Suppl 1):220.
4. Bhat M, Haris K, Bidhult S, Liuba P, Aletras AH, Hedström E. High-resolution iGRASP fetal cardiac cine magnetic resonance imaging assisting in prenatal diagnosis of complicated cardiac malformation with impact on delivery planning. Pediatr Cardiol. 2019;39:2–6.
5. Lloyd DFA, Pushparajah K, Simpson JM, van Amerom JF, van Poppel MPM, Schulz A, et al. Three-dimensional visualisation of the fetal heart using prenatal MRI with motion corrected slice-volume registration. Lancet. 2018;393(18):1–10.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献