Infarct quantification with cardiovascular magnetic resonance using "standard deviation from remote" is unreliable: validation in multi-centre multi-vendor data

Author:

Heiberg EinarORCID,Engblom Henrik,Carlsson Marcus,Erlinge David,Atar Dan,Aletras Anthony H.,Arheden Håkan

Abstract

Abstract Background The objective of the study was to investigate variability and agreement of the commonly used image processing method “n-SD from remote” and in particular for quantifying myocardial infarction by late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR). LGE-CMR in tandem with the analysis method “n-SD from remote” represents the current reference standard for infarct quantification. This analytic method utilizes regions of interest (ROIs) and defines infarct as the tissue with a set number of standard deviations (SD) above the signal intensity of remote nulled myocardium. There is no consensus on what the set number of SD is supposed to be. Little is known about how size and location of ROIs and underlying signal properties in the LGE images affect results. Furthermore, the method is frequently used elsewhere in medical imaging often without careful validation. Therefore, the usage of the “n-SD” method warrants a thorough validation. Methods Data from 214 patients from two multi-center cardioprotection trials were included. Infarct size from different remote ROI positions, ROI size, and number of standard deviations (“n-SD”) were compared with reference core lab delineations. Results Variability in infarct size caused by varying ROI position, ROI size, and “n-SD” was 47%, 48%, and 40%, respectively. The agreement between the “n-SD from remote” method and the reference infarct size by core lab delineations was low. Optimal “n-SD” threshold computed on a slice-by-slice basis showed high variability, n = 5.3 ± 2.2. Conclusion The “n-SD from remote” method is unreliable for infarct quantification due to high variability which depends on different placement and size of remote ROI, number “n-SD”, and image signal properties related to the CMR-scanner and sequence used. Therefore, the “n-SD from remote” method should not be used, instead methods validated against an independent standard are recommended.

Funder

Vetenskapsrådet

FP7 Ideas: European Research Council

Hjärt-Lungfonden

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3