Automated segmentation of long and short axis DENSE cardiovascular magnetic resonance for myocardial strain analysis using spatio-temporal convolutional neural networks

Author:

Barbaroux HugoORCID,Kunze Karl P.,Neji Radhouene,Nazir Muhummad Sohaib,Pennell Dudley J.,Nielles-Vallespin Sonia,Scott Andrew D.,Young Alistair A.

Abstract

Abstract Background Cine Displacement Encoding with Stimulated Echoes (DENSE) facilitates the quantification of myocardial deformation, by encoding tissue displacements in the cardiovascular magnetic resonance (CMR) image phase, from which myocardial strain can be estimated with high accuracy and reproducibility. Current methods for analyzing DENSE images still heavily rely on user input, making this process time-consuming and subject to inter-observer variability. The present study sought to develop a spatio-temporal deep learning model for segmentation of the left-ventricular (LV) myocardium, as spatial networks often fail due to contrast-related properties of DENSE images. Methods 2D + time nnU-Net-based models have been trained to segment the LV myocardium from DENSE magnitude data in short- and long-axis images. A dataset of 360 short-axis and 124 long-axis slices was used to train the networks, from a combination of healthy subjects and patients with various conditions (hypertrophic and dilated cardiomyopathy, myocardial infarction, myocarditis). Segmentation performance was evaluated using ground-truth manual labels, and a strain analysis using conventional methods was performed to assess strain agreement with manual segmentation. Additional validation was performed using an externally acquired dataset to compare the inter- and intra-scanner reproducibility with respect to conventional methods. Results Spatio-temporal models gave consistent segmentation performance throughout the cine sequence, while 2D architectures often failed to segment end-diastolic frames due to the limited blood-to-myocardium contrast. Our models achieved a DICE score of 0.83 ± 0.05 and a Hausdorff distance of 4.0 ± 1.1 mm for short-axis segmentation, and 0.82 ± 0.03 and 7.9 ± 3.9 mm respectively for long-axis segmentations. Strain measurements obtained from automatically estimated myocardial contours showed good to excellent agreement with manual pipelines, and remained within the limits of inter-user variability estimated in previous studies. Conclusion Spatio-temporal deep learning shows increased robustness for the segmentation of cine DENSE images. It provides excellent agreement with manual segmentation for strain extraction. Deep learning will facilitate the analysis of DENSE data, bringing it one step closer to clinical routine.

Funder

EPSRC Centre for Doctoral Training in Medical Imaging

Siemens Healthineers

British Heart Foundation

National Institute for Health and Care Research

Centre For Medical Engineering, King’s College London

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3