Non-invasive cardiovascular magnetic resonance assessment of pressure recovery distance after aortic valve stenosis

Author:

Fernandes Joao FilipeORCID,Gill Harminder,Nio Amanda,Faraci Alessandro,Galli Valeria,Marlevi David,Bissell Malenka,Ha Hojin,Rajani Ronak,Mortier Peter,Myerson Saul G.,Dyverfeldt Petter,Ebbers Tino,Nordsletten David A.,Lamata Pablo

Abstract

Abstract Background Decisions in the management of aortic stenosis are based on the peak pressure drop, captured by Doppler echocardiography, whereas gold standard catheterization measurements assess the net pressure drop but are limited by associated risks. The relationship between these two measurements, peak and net pressure drop, is dictated by the pressure recovery along the ascending aorta which is mainly caused by turbulence energy dissipation. Currently, pressure recovery is considered to occur within the first 40–50 mm distally from the aortic valve, albeit there is inconsistency across interventionist centers on where/how to position the catheter to capture the net pressure drop. Methods We developed a non-invasive method to assess the pressure recovery distance based on blood flow momentum via 4D Flow cardiovascular magnetic resonance (CMR). Multi-center acquisitions included physical flow phantoms with different stenotic valve configurations to validate this method, first against reference measurements and then against turbulent energy dissipation (respectively n = 8 and n = 28 acquisitions) and to investigate the relationship between peak and net pressure drops. Finally, we explored the potential errors of cardiac catheterisation pressure recordings as a result of neglecting the pressure recovery distance in a clinical bicuspid aortic valve (BAV) cohort of n = 32 patients. Results In-vitro assessment of pressure recovery distance based on flow momentum achieved an average error of 1.8 ± 8.4 mm when compared to reference pressure sensors in the first phantom workbench. The momentum pressure recovery distance and the turbulent energy dissipation distance showed no statistical difference (mean difference of 2.8 ± 5.4 mm, R2 = 0.93) in the second phantom workbench. A linear correlation was observed between peak and net pressure drops, however, with strong dependences on the valvular morphology. Finally, in the BAV cohort the pressure recovery distance was 78.8 ± 34.3 mm from vena contracta, which is significantly longer than currently accepted in clinical practise (40–50 mm), and 37.5% of patients displayed a pressure recovery distance beyond the end of the ascending aorta. Conclusion The non-invasive assessment of the distance to pressure recovery is possible by tracking momentum via 4D Flow CMR. Recovery is not always complete at the ascending aorta, and catheterised recordings will overestimate the net pressure drop in those situations. There is a need to re-evaluate the methods that characterise the haemodynamic burden caused by aortic stenosis as currently clinically accepted pressure recovery distance is an underestimation.

Funder

Wellcome Trust

Wellcome/EPSRC Centre for Medical Engineering at King's College London

H2020 Marie Skłodowska-Curie Actions

British Heart Foundation

Engineering and Physical Sciences Research Council

Knut och Alice Wallenbergs Stiftelse

FP7 People: Marie-Curie Actions

Swedish Research Council Grant

Swedish Heart and Lung Foundation

National Research Foundation of Korea

British Heart Foundation Clinical Research Training Fellowship

Oxford Biomedical Research Center

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of Aortic Hemodynamics Using Four‐Dimensional Flow of Magnetic Resonance Imaging in Rabbits with Liver Fibrosis;Journal of Magnetic Resonance Imaging;2024-03-23

2. Four-Dimensional Flow MR Imaging;Magnetic Resonance Imaging Clinics of North America;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3