A dual-stage partially interpretable neural network for joint suppression of bSSFP banding and flow artifacts in non-phase-cycled cine imaging

Author:

Chen Zhuo,Hua Sha,Gao Juan,Chen Yanjia,Gong Yiwen,Shen Yiwen,Tang Xin,Emu Yixin,Jin Wei,Hu ChenxiORCID

Abstract

Abstract Purpose To develop a partially interpretable neural network for joint suppression of banding and flow artifacts in non-phase-cycled bSSFP cine imaging. Methods A dual-stage neural network consisting of a voxel-identification (VI) sub-network and artifact-suppression (AS) sub-network is proposed. The VI sub-network provides identification of artifacts, which guides artifact suppression and improves interpretability. The AS sub-network reduces banding and flow artifacts. Short-axis cine images of 12 frequency offsets from 28 healthy subjects were used to train and test the dual-stage network. An additional 77 patients were retrospectively enrolled to evaluate its clinical generalizability. For healthy subjects, artifact suppression performance was analyzed by comparison with traditional phase cycling. The partial interpretability provided by the VI sub-network was analyzed via correlation analysis. Generalizability was evaluated for cine obtained with different sequence parameters and scanners. For patients, artifact suppression performance and partial interpretability of the network were qualitatively evaluated by 3 clinicians. Cardiac function before and after artifact suppression was assessed via left ventricular ejection fraction (LVEF). Results For the healthy subjects, visual inspection and quantitative analysis found a considerable reduction of banding and flow artifacts by the proposed network. Compared with traditional phase cycling, the proposed network improved flow artifact scores (4.57 ± 0.23 vs 3.40 ± 0.38, P = 0.002) and overall image quality (4.33 ± 0.22 vs 3.60 ± 0.38, P = 0.002). The VI sub-network well identified the location of banding and flow artifacts in the original movie and significantly correlated with the change of signal intensities in these regions. Changes of imaging parameters or the scanner did not cause a significant change of overall image quality relative to the baseline dataset, suggesting a good generalizability. For the patients, qualitative analysis showed a significant improvement of banding artifacts (4.01 ± 0.50 vs 2.77 ± 0.40, P < 0.001), flow artifacts (4.22 ± 0.38 vs 2.97 ± 0.57, P < 0.001), and image quality (3.91 ± 0.45 vs 2.60 ± 0.43, P < 0.001) relative to the original cine. The artifact suppression slightly reduced the LVEF (mean bias = -1.25%, P = 0.01). Conclusions The dual-stage network simultaneously reduces banding and flow artifacts in bSSFP cine imaging with a partial interpretability, sparing the need for sequence modification. The method can be easily deployed in a clinical setting to identify artifacts and improve cine image quality.

Funder

National Natural Science Foundation of China

Shanghai Science and Technology Development Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3