Functional assessment of bioprosthetic mitral valves by cardiovascular magnetic resonance: An in vitro validation and comparison to Doppler echocardiography
-
Published:2020-07-30
Issue:1
Volume:22
Page:
-
ISSN:1532-429X
-
Container-title:Journal of Cardiovascular Magnetic Resonance
-
language:en
-
Short-container-title:J Cardiovasc Magn Reson
Author:
Maragiannis DimitriosORCID, Jackson Matthew S., Autry Kyle, Flores Arredondo Jose H., Aggeli Constantina, Tousoulis Dimitrios, Zoghbi William A., Shah Dipan J., Little Stephen H.
Abstract
Abstract
Background
A comprehensive non-invasive evaluation of bioprosthetic mitral valve (BMV) function can be challenging. We describe a novel method to assess BMV effective orifice area (EOA) based on phase contrast (PC) cardiovascular magnetic resonance (CMR) data. We compare the performance of this new method to Doppler and in vitro reference standards.
Methods
Four sizes of normal BMVs (27, 29, 31, 33 mm) and 4 stenotic BMVs (27 mm and 29 mm, with mild or severe leaflet obstruction) were evaluated using a CMR- compatible flow loop. BMVs were evaluated with PC-CMR and Doppler methods under flow conditions of; 70 mL, 90 mL and 110 mL/beat (n = 24). PC-EOA was calculated as PC-CMR flow volume divided by the PC- time velocity integral (TVI).
Results
PC-CMR measurements of the diastolic peak velocity and TVI correlated strongly with Doppler values (r = 0.99, P < 0.001 and r = 0.99, P < 0.001, respectively). Across all conditions tested, the Doppler and PC-CMR measurement of EOA (1.4 ± 0.5 vs 1.5 ± 0.7 cm2, respectively) correlated highly (r = 0.99, P < 0.001), with a minimum bias of 0.13 cm2, and narrow limits of agreement (− 0.2 to 0.5 cm2).
Conclusion
We describe a novel method to assess BMV function based on PC measures of transvalvular flow volume and velocity integration. PC-CMR methods can be used to accurately measure EOA for both normal and stenotic BMV’s and may provide an important new parameter of BMV function when Doppler methods are unobtainable or unreliable.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Reference23 articles.
1. Zoghbi WA, Chambers JB, Dumesnil JG, Foster E, Gottdiener JS, Grayburn PA, Khandheria BK, Levine RA, Marx GR, Miller FAJ, Nakatani S, Quinones MA, Rakowski H, Rodriguez LL, Swaminathan M, Waggoner AD, Weissman NJ, Zabalgoitia M. Recommendations for evaluation of prosthetic valves with echocardiography and doppler ultrasound. J Am Soc Echocardiogr. 2009;22:975–1014. 2. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP III, Guyton RA, O'Gara PT, Ruiz CE, Skubas NJ, Sorajja P, Sundt TM III, Thomas JD, Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Creager MA, Curtis LH, DeMets D, Guyton RA, Hochman JS, Kovacs RJ, Ohman EM, Pressler SJ, Sellke FW, Shen WK, Stevenson WG, Yancy CW. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Thorac Cardiovasc Surg. 2014;148:e1–e132. 3. Jackson MS, Igo SR, Lindsey TE, Maragiannis D, Chin K, Autry K, Schutt R, Shah DJ, Valsecchi P, Kline WB, Little SH. Development of a Multi-modality Compatible Flow Loop System for the Functional Assessment of Mitral Valve Prostheses. Cardiovasc Eng Technol 2014;5:13–24. 4. Valdes-Cruz LM, Yoganathan AP, Tamura T, Tomizuka F, Woo YR, Sahn DJ. Studies in vitro of the relationship between ultrasound and laser Doppler velocimetry and applicability to the simplified Bernoulli relationship. Circulation. 1986;73:300–8. 5. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 2-8-1986;1:307–310.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|