Developing a medical device-grade T2 phantom optimized for myocardial T2 mapping by cardiovascular magnetic resonance
-
Published:2023-03-20
Issue:1
Volume:25
Page:
-
ISSN:1532-429X
-
Container-title:Journal of Cardiovascular Magnetic Resonance
-
language:en
-
Short-container-title:J Cardiovasc Magn Reson
Author:
Topriceanu Constantin-CristianORCID, Fornasiero Massimiliano, Seo Han, Webber Matthew, Keenan Kathryn E., Stupic Karl F., Bruehl Rüdiger, Ittermann Bernd, Price Kirsty, McGrath Louise, Pang Wenjie, Hughes Alun D., Nezafat Reza, Kellman Peter, Pierce Iain, Moon James C., Captur GabriellaORCID
Abstract
Abstract
Introduction
A long T2 relaxation time can reflect oedema, and myocardial inflammation when combined with increased plasma troponin levels. Cardiovascular magnetic resonance (CMR) T2 mapping therefore has potential to provide a key diagnostic and prognostic biomarkers. However, T2 varies by scanner, software, and sequence, highlighting the need for standardization and for a quality assurance system for T2 mapping in CMR.
Aim
To fabricate and assess a phantom dedicated to the quality assurance of T2 mapping in CMR.
Method
A T2 mapping phantom was manufactured to contain 9 T1 and T2 (T1|T2) tubes to mimic clinically relevant native and post-contrast T2 in myocardium across the health to inflammation spectrum (i.e., 43–74 ms) and across both field strengths (1.5 and 3 T). We evaluated the phantom’s structural integrity, B0 and B1 uniformity using field maps, and temperature dependence. Baseline reference T1|T2 were measured using inversion recovery gradient echo and single-echo spin echo (SE) sequences respectively, both with long repetition times (10 s). Long-term reproducibility of T1|T2 was determined by repeated T1|T2 mapping of the phantom at baseline and at 12 months.
Results
The phantom embodies 9 internal agarose-containing T1|T2 tubes doped with nickel di-chloride (NiCl2) as the paramagnetic relaxation modifier to cover the clinically relevant spectrum of myocardial T2. The tubes are surrounded by an agarose-gel matrix which is doped with NiCl2 and packed with high-density polyethylene (HDPE) beads. All tubes at both field strengths, showed measurement errors up to ≤ 7.2 ms [< 14.7%] for estimated T2 by balanced steady-state free precession T2 mapping compared to reference SE T2 with the exception of the post-contrast tube of ultra-low T1 where the deviance was up to 16 ms [40.0%]. At 12 months, the phantom remained free of air bubbles, susceptibility, and off-resonance artifacts. The inclusion of HDPE beads effectively flattened the B0 and B1 magnetic fields in the imaged slice. Independent temperature dependency experiments over the 13–38 °C range confirmed the greater stability of shorter vs longer T1|T2 tubes. Excellent long-term (12-month) reproducibility of measured T1|T2 was demonstrated across both field strengths (all coefficients of variation < 1.38%).
Conclusion
The T2 mapping phantom demonstrates excellent structural integrity, B0 and B1 uniformity, and reproducibility of its internal tube T1|T2 out to 1 year. This device may now be mass-produced to support the quality assurance of T2 mapping in CMR.
Funder
British Heart Foundation Barts Charity
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Reference35 articles.
1. Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, et al. Myocardial T1 mapping and extracellular volume quantification: A Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92–92. https://doi.org/10.1186/1532-429X-15-92. 2. Topriceanu C-C, Pierce I, Moon J, Captur G. T 2 and T 2⁎ mapping and weighted imaging in cardiac MRI. In: Magnetic Resonance Imaging; 2022:15–32. 3. Roy C, Slimani A, De Meester C, Amzulescu M, Pasquet A, Vancraeynest D, Vanoverschelde J-L, Pouleur A-C, Gerber BL. Age and sex corrected normal reference values of T1, T2 T2∗and ECV in healthy subjects at 3T CMR. J Cardiovasc Magn Reson. 2017;19:72–72. https://doi.org/10.1186/s12968-017-0371-5. 4. Granitz M, Motloch LJ, Granitz C, Meissnitzer M, Hitzl W, Hergan K, Schlattau A. Comparison of native myocardial T1 and T2 mapping at 1.5T and 3T in healthy volunteers: Reference values and clinical implications. Wien Klin Wochenschr. 2018;131:143–55. https://doi.org/10.1007/s00508-018-1411-3. 5. Wiesmueller M, Wuest W, Heiss R, Treutlein C, Uder M, May MS. Cardiac T2 mapping: Robustness and homogeneity of standardized in-line analysis. J Cardiovasc Magn Reson. 2020;22:39–39. https://doi.org/10.1186/s12968-020-00619-x.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|