Aqueous alteration without initial water: possibility of organic-induced hydration of anhydrous silicates in meteorite parent bodies

Author:

Hirakawa Naoki,Kebukawa YokoORCID,Furukawa Yoshihiro,Kondo Masashi,Nakano Hideyuki,Kobayashi Kensei

Abstract

AbstractEarly evolution of Solar System small bodies proceeded through interactions of mineral and water. Melting of water ice accreted with mineral particles to the parent body results in the formation of secondary minerals, the so-called aqueous alteration. Formation of phyllosilicates from anhydrous silicates is a typical alteration effect recorded in primitive meteorites. In addition to mineral and water, organic matter could have been also a significant component in meteorite parent bodies. However, the role of organic matter in the alteration of silicates is not well understood. We conducted a heating experiment of anhydrous silicate (olivine) with a mixture of organic compounds which simulated primordial organic matter in the Solar System. Dissolution and precipitation features were confirmed on the olivine surface after heating at 300 °C for 10 days, and proto-phyllosilicates were formed in the precipitation area. Magnesite was also detected as concomitant mineral phase. These minerals could be the evidence of aqueous alteration and carbonation of olivine induced by water generated through decomposition of the organic compounds with hydroxy groups. Our result showed that the in situ formation of hydrated silicates through a mineral–organic interaction without the initial presence of water. It further implies that formation of phyllosilicates on the olivine surface in contact with organic matter can occur in meteorite parent bodies which formed inside the H2O snow line but accreted with organic matter, initially without water. Water formed through decomposition of organic matter could be one candidate for hydrous silicate formation, for example, in ordinary chondrites from S-type asteroids inside the H2O snow line. Although the origin of water in ordinary chondrites is under debate, water generation from organic matter may also explain the D-rich water in ordinary chondrites because primordial organic matter is known to be D rich.

Funder

Japan Society for the Promotion of Science

Sasakawa Scientific Research Grant

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3