Abstract
AbstractThe variable electromagnetic environment in geospace plays a crucial role in influencing the occurrence probability of satellite anomalies. FORMOSAT-3 (FS3) is a Low-Earth-Orbit (LEO) mission, which consists of six identical microsatellites that orbit in the altitude of 700–800 km and with an inclination of 72°. The dependences of the FS3 satellite anomalies on space weather conditions have not been investigated in the past. With an exception of a small number of extremely high geomagnetic events, we find that the occurrence rate of the FS3 anomalies is negatively correlated with the level of geomagnetic activity. Moreover, the relationship between numbers of anomalies and sunspots is also anti-correlated. A superposed epoch analysis demonstrates that the intensity of galactic cosmic rays (GCR) is relatively high at the times of the anomalies. All these results infer that the FS3 anomalies predominantly occurred under the conditions associated with low solar activity. The possible main cause for the FS3 anomalies is high-energy trapped protons or GCR. In summary, this paper presents a statistical result that a satellite can be prone to suffer an anomaly under low solar or geomagnetic activity.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Geology
Reference44 articles.
1. Ahmad N, Herdiwijaya D, Djamaluddin T, Usui H, Miyake Y (2018) Diagnosing low earth orbit satellite anomalies using NOAA-15 electron data associated with geomagnetic perturbations. Earth Planets Space 70:91. https://doi.org/10.1186/s40623-018-0852-2
2. Albert JM, Ginet GP, Gussenhoven MS (1998) CRRES observations of radiation belt protons 1. Data overview and steady state radial diffusion. J Geophys Res 103:9261–9273. https://doi.org/10.1029/97JA02869
3. Allen JH (1982) Some commonly used magnetic activity indices: Their derivation, meaning and use. In: Proceedings of a workshop on satellite drag, edited by environment research laboratories, NOAA, Boulder, Colorado, pp 114.
4. Anderson PC, Hanson WB, Hoegy WR (1994) Spacecraft potential effects on the Dynamics Explorer 2 satellite. J Geophys Res 99:3985–3997. https://doi.org/10.1029/93JA02104
5. Baker DN (2000) The occurrence of operational anomalies in spacecraft and their relationship to space weather. IEEE Trans Plasma Sci 28:2007–2016. https://doi.org/10.1109/27.902228
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献