Latitudinal and interhemispheric differences of the ionospheric semi-diurnal lunitidal perturbations during the 2009 Arctic sudden stratospheric warming event in the eastern Asia–Australia sector

Author:

Liu Jing,Zhang DongheORCID,Sun Shuji,Hao Yongqiang,Xiao Zuo

Abstract

AbstractThe ionosphere exhibits some characteristic perturbations during sudden stratospheric warming (SSW) events, of which the mechanism is not thoroughly understood. This study focuses on the latitudinal and interhemispheric differences of the enhanced semi-diurnal lunitidal (M2) perturbations related to SSW using total electron content calculated from the network of Global Navigation Satellite System and ionosonde data in the eastern Asia–Australia sector during the January 2009 SSW. Our results show that the most distinct M2 perturbations in the northern and southern hemispheres occur near the Equatorial Ionization Anomaly crest regions around ± 15° geomagnetic latitudes, but corresponds to different moon phases, respectively. Clear M2 perturbations extend to middle latitudes only in the southern hemisphere and have another local maximum in the southern middle latitude. Such latitudinal and interhemispheric features of ionospheric M2 perturbations in the low latitude in the eastern Asia–Australia sector are similar as those in the American sector during the same SSW event. This supports previous suggestion that such latitudinal and interhemispheric differences in the low latitude can be primarily explained by the summer–winter thermospheric wind modulation on equatorial plasma fountain and thus emphasize its role in the vertical coupling process of M2 perturbation. The clear differences of M2 perturbations in the southern middle latitude between the eastern Asia–Australia and American sectors indicate that the thermospheric circulation related to the Weddell Sea Anomaly may have influence on the lower atmosphere–ionosphere coupling. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3