Magnetotelluric sampling theorem

Author:

Utada HisashiORCID,Rung-Arunwan Tawat,Siripunvaraporn Weerachai

Abstract

AbstractWe consider a general case of a magnetotelluric (MT) study to reveal three-dimensional (3D) distribution of the electrical conductivity within the Earth based on measurements of electromagnetic (EM) fields by a two-dimensional (2D) array. Such an MT array observation can be regarded as a spatially discrete sampling of the MT responses (impedances), and each observation site can be regarded as a sampling point. This means that MT array measurements must follow the Nyquist–Shannon sampling theorem. This paper discusses how the sampling theorem is applied to MT array studies and what kind of consideration is required in the application on the basis of synthetic model calculations, with special attention to spatial resolutions. With an aid of the EM scattering theory and the sampling theorem, we can show that an observation array resolves some features of the MT impedance but does not others. We call the resolvable and unresolvable features the MT signal and noise, respectively. This study introduces the spatial Fourier transform of array MT data (impedances) which helps us investigating sampling effects of lateral heterogeneity from a different angle (in the wavenumber domain). Shallow heterogeneities cause a sharp spatial change of impedance elements near structural boundaries. High wavenumber Fourier components are required to describe such a feature, which means the site spacing must be sufficiently short to be able to resolve such features. Otherwise, a set of array MT data will suffer from aliasing, which is one of the typical causes of MT distortion (MT geologic noise). Conversely, a signal due to a deep-seated conductivity anomaly will have more reduced amplitude at higher wavenumbers, which means focused imaging of such an anomaly is generally difficult. Finally, it is suggested to properly consider the sampling theorem in an observation array design, so as to have best performance in resolving MT signals. Graphical abstract

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3