Estimation of source parameters using a non-Gaussian probability density function in a Bayesian framework

Author:

Yoshimitsu NanaORCID,Maeda Takuto,Sei Tomonari

Abstract

AbstractSource parameters represent key factors in seismic hazard assessment and understanding source physics of earthquakes. In addition to conventional grid search approach to estimate source parameters, other approaches have been used recently. This study uses a Bayesian framework, the Markov Chain Monte Carlo method, to estimate source parameters including uncertainty assessment with inter-parameter correlations. The Bayesian calculation method requires to select a probability density function for estimating likelihood and the function can influence calculation reliability. While most studies use a normal distribution, we select an F-distribution due to its suitability for the data in ratio form. Using synthetic data and real observations from induced earthquakes in Oklahoma, we compare the calculation steps for spectral fitting and source parameter estimation using the two probability density functions. The sampling distribution and estimated parameters support the assumption that the F-distribution is well-suited for spectral ratio analysis. Results further show that a sampling distribution can effectively reveal trade-offs and uncertainty among parameters. Sampling distribution trends also reveal data quality criteria that can be used to refine results. Graphical Abstract

Funder

Core Research for Evolutional Science and Technology

Japan Society for the Promotion of Science

Earthquake Research Institute, the University of Tokyo

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3