Comparison of terrestrial and Martian TEC at dawn and dusk during solstices

Author:

Burrell Angeline G.ORCID,Sánchez-Cano Beatriz,Witasse Olivier,Lester Mark,Cartacci Marco

Abstract

AbstractThis paper used the similarities between the ionospheres on Mars and Earth, the most similar of the terrestrial planets, to examine the relative importance of photochemical and transport processes at dawn and dusk. The amount of plasma present in the ionosphere, as measured by the total electron content (TEC), was examined at different locations for both solstice seasons over a solar cycle. Using the rate of change of TEC as a function of solar zenith angle made it possible to compare the plasma production via photoionisation and loss via recombination in the main layer of each planetary ionosphere despite the extreme differences in the total quantity of plasma. This study finds that, at least to first order, the dawn and dusk TEC slopes at Mars are symmetric. This symmetry is interpreted as an indicator of photochemical equilibrium. Deviations from photochemical equilibrium in different geographic and aerographic regions were used to explore the underlying processes responsible for plasma transport. Seasonal and solar cycle variations were also examined at dusk. These variations found that differing interactions with solar forcing mechanisms resulted in a Martian ionosphere with regions that showed evidence of significant transport processes at solar maximum, while at Earth transport processes were most important at solar minimum. In general, the photochemical processes in both ionospheres behave similarly when no magnetic field is considered. The presence or absence of a magnetic field shape the production via photoionisation and loss via recombination processes in both ionospheres, especially when considering plasma transport. This study has notable implications for comparative aeronomy, as a good understanding of how the ionosphere of magnetised and un-magnetised bodies compares is important for characterising planetary environments and atmospheric evolution over long time scales.

Funder

Science and Technology Facilities Council

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3