Ionospheric disturbance caused by artificial plasma clouds under different release conditions

Author:

Zhu XiaoliORCID,Hu Yaogai,Zhao Zhengyu,Ni Binbin,Zhang Yuannong

Abstract

AbstractThe generation and evolution of artificial plasma clouds is a complicated process that is strongly dependent on the background environment and release conditions. In this paper, based on a three-dimensional two-species fluid model, the evolution characteristics of artificial plasma clouds under various release conditions were analyzed numerically. In particular, the effect of ionospheric density gradient and ambient horizontal wind field was taken into account in our simulation. The results show that an asymmetric plasma cloud structure occurs in the vertical direction when a nonuniform ionosphere is assumed. The density, volume, and expansion velocity of the artificial plasma cloud vary with the release altitude, mass, and initial ionization rate. The initial release velocity can change the cloud's movement and overall distribution. With an initial velocity perpendicular to the magnetic field, an O+ density cavity and two bumps exist. When there is an initial velocity parallel to the magnetic field, the generated plasma cloud is bulb-shaped, and only one O+ density cavity and one density bump are created. Compared to the cesium case, barium clouds expand more rapidly. Moreover, Cs+ clouds have a higher density than Ba+ clouds, and the snowplow effect of Cs+ is also stronger.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3