The GAs Extraction and Analyses system (GAEA) for immediate extraction and measurements of volatiles in the Hayabusa2 sample container

Author:

Miura Yayoi N.ORCID,Okazaki Ryuji,Takano Yoshinori,Sakamoto Kanako,Tachibana Shogo,Yamada Keita,Sakai Saburo,Sawada Hirotaka

Abstract

AbstractHayabusa2 returned surface samples from the C-type near-Earth asteroid (162173) Ryugu to Woomera, South Australia, in December 2020. The samples returned from Ryugu are expected to contain not only volatile components reflecting its primitive nature, but also solar wind components due to exposure to space. Such volatiles may partly be released inside the sealed sample container enclosing Ryugu samples due to particle destruction or container heating in a contingency case. In order to collect and analyze volatiles released in the container prior to the container-opening, we set up a gas extraction and analyses system (GAEA: GAs Extraction and Analyses system). The system requires ultra-high vacuum conditions, small vacuum line volume to minimize dead volume and simple configuration as well as having an interface to connect the container. The system includes gas bottles for passive collection of volatiles at room temperature and bottles for active collection at liquid nitrogen temperature. A quadrupole mass spectrometer is installed to analyze gases in the vacuum line, and a non-evaporative getter pump is also used when noble gases are analyzed. The rehearsal operation of the GAEA was made at ISAS/JAXA as well as transportation tests in Japan. In November 2020, it was transported safely to the Quick Look Facility (QLF) in Woomera. It was set up at the QLF and worked as planned for collection and analysis of gas components from the returned sample container. Here we report the concept, design and calibration results for the GAEA and an outline of analytical protocols applied in Woomera. Graphical Abstract

Funder

the Hayabusa2 project

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Reference37 articles.

1. Arakawa M, Saiki T, Wada K, Ogawa K, Kadono T, Shirai K, Sawada H, Ishibashi K, Honda R, Sakatani N, Iijima Y, Okamoto C, Yano H, Takagi Y, Hayakawa M, Michel P, Jutzi M, Shimaki Y, Kimura S, Mimasu Y, Toda T, Imamura H, Nakazawa S, Hayakawa H, Sugita S, Morota T, Kameda S, Tatsumi E, Cho Y, Yoshioka K, Yokota Y, Matsuoka M, Yamada M, Kouyama T, Honda C, Tsuda Y, Watanabe S, Yoshikawa M, Tanaka S, Terui F, Kikuchi S, Yamaguchi T, Ogawa N, Ono G, Yoshikawa K, Takahashi T, Takei Y, Fujii A, Takeuchi H, Yamamoto Y, Okada T, Hirose C, Hosoda S, Mori O, Shimada T, Soldini S, Tsukizaki R, Iwata T, Ozaki M, Abe M, Namiki N, Kitazato K, Tachibana S, Ikeda H, Hirata N, Hirata N, Noguchi R, Miura A (2020) An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime. Science 368:67–71. https://doi.org/10.1126/science.aaz1701

2. Black DC (1972a) On the origins of trapped helium, neon and argon isotopic variations in meteorites–I. Gas-rich meteorites, lunar soil and breccia. Geochim Cosmochim Acta 36:347–375. https://doi.org/10.1016/0016-7037(72)90028-2

3. Black DC (1972b) On the origins of trapped helium, neon and argon isotopic variations in meteorites –I I. Carbonaceous Meteorites Geochim Cosmochim Acta 36:377–394. https://doi.org/10.1016/0016-7037(72)90029-4

4. Busemann H, Meier MMM, Altmann F, Alwmark C, Bajt S, Beyersdorfer J, Böttger U, Crowther SA, Gilmour JD, Heitmann U, Hübers H-W, Maden C, Marone F, Pavlov SG, Schade U, Spring NH, Stampanoni M, Weber I (2015) New noble gas data and further examinations of dust from asteroid Itokawa. Paper presented at the 46th Lunar and Planetary Science Conference 46:#2113

5. Hirashita N, Urano M, Yoshida H (2013) Measurements of outgassing rages in a field of analysis (in Japanese with English abstract). J Vac Soc Jpn 57:214–218. https://doi.org/10.3131/jvsj2.57.214

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3