Abstract
AbstractInflations at active volcanoes are indicators of overpressure in the subsurface, which is known to be a phenomenon that precedes eruptions. Volcanic overpressure is induced by the injection of magmatic fluids, accumulated magma, or heat supply from greater depths. Azuma volcano (Japan) has experienced several episodes of volcanic unrest with increases in seismicity at the depth of the hydrothermal system, implying a potential increase in phreatic eruptions. The time series of interferometric synthetic aperture radar data, associated with the unrest episodes occurring in 2014–2015 and 2018–2019, revealed spatiotemporal variations of inflation episodes, centered around Oana crater, the most active fumarole of Azuma volcano. The modeled best-fit geometry of the elongated pressure source for the local deformation has the same dip as the overlying topographic slope direction and angle around Oana crater, suggesting the existence of topography-correlated layered structures within the hydrothermal system. In contrast, the broader deformation associated with the 2014–2015 unrest was explained by the overpressure of a horizontal flat source at 360–1500 m below sea level, showing the similar depth of the top as the conductive low-resistivity or low-viscosity body suggested by previous studies. The unrest episodes were thus interpreted as resulting mainly from the supply of magmatic fluids, or the transfer of heat from greater depths. Our study helps in understanding the shallow structure of this volcanic system and contributes to evaluating the potential for forthcoming eruptions in Azuma volcano.
Graphical Abstract
Funder
Ministry of Education, Culture, Sports, Science and Technology
Publisher
Springer Science and Business Media LLC
Reference57 articles.
1. Amelung F, Jonsson S, Zebker H, Segall P (2000) Widespread uplift and “trapdoor” faulting on Galapagos volcanoes observed with radar interferometry. Nature 407(6807):993–996. https://doi.org/10.1038/35039604
2. Ban M, Takebe Y, Adachi T, Matsui R, Nishi Y (2016) Eruption histories of Zao and Azuma volcanoes and their magma feeding systems for recent activities. Bull Earthq Res Inst Univ Tokyo 91(3):25–39
3. Barbour AJ, Evans EL, Hickman SH, Eneva M (2016) Subsidence rates at the southern Salton Sea consistent with reservoir depletion. J Geophys Res Solid Earth 121(7):5308–5327. https://doi.org/10.1002/2016JB012903
4. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383. https://doi.org/10.1109/TGRS.2002.803792
5. Browne PRL (1978) Hydrothermal alteration in active geothermal fields. Annu Rev Earth Planet Sci 6(1):229–248. https://doi.org/10.1146/annurev.ea.06.050178.001305
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献