Reframing the magnetotelluric phase tensor for monitoring applications: improved accuracy and precision in strike determinations

Author:

Bravo-Osuna Ana G.ORCID,Gómez-Treviño Enrique,Cortés-Arroyo Olaf J.,Delgadillo-Jauregui Nestor F.,Arellano-Castro Rocío F.

Abstract

AbstractThe magnetotelluric method is increasingly being used to monitor electrical resistivity changes in the subsurface. One of the preferred parameters derived from the surface impedance is the strike direction, which is very sensitive to changes in the direction of the subsurface electrical current flow. The preferred method for estimating the strike changes is that provided by the phase tensor because it is immune to galvanic distortions. However, it is also a fact that the associated analytic formula is unstable for noisy data, something that limits its applicability for monitoring purposes, because in general this involves comparison of two or more very similar datasets. One of the issues is that the noise complicates the distribution of estimates between the four quadrants. This can be handled by sending all values to the same quadrant by adding or subtracting the appropriate amount. This is justified by showing that the analytic formula is also a least squares solution. This is equivalent to define penalty functions for the matrix of eigenvalues and then select the minima numerically. Contrary to the analytic formula, this numerical approach can be generalized to compute strikes using windows of any number of periods, thus providing tradeoffs between variance and resolution. The performance of the proposed approach is illustrated by its application to synthetic data and to real data from a monitoring array in the Cerro Prieto geothermal field, México.

Funder

CONACYT

Centro de Investigación Científica y de Educación Superior de Ensenada

Centro Mexicano de Innovación en Energía Geotérmica

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Reference30 articles.

1. Backus G, Gilbert F (1968) The resolving power of gross earth data. Geophys J Int 16(2):169–205

2. Bahr K (1988) Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion. J Geophys 62(1):119–127

3. Bibby HM (1977) The apparent resistivity tensor. Geophysics 42(6):1258–1261

4. Booker J, Burd A (2006) Second generation Pb-PbCl2 electrodes for geophysical applications (revisited). In: Poster. 18th international workshop on electromagnetic induction in the Earth. El Vendrell, España

5. Cagniard L (1953) Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics 18(3):605–635. https://doi.org/10.1190/1.1437915

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3