Forward modeling of quake’s infrasound recorded in the stratosphere on board balloon platforms

Author:

Gerier S.ORCID,Garcia R. F.,Martin R.,Hertzog A.

Abstract

AbstractAcoustic waves generated by seismic waves contain information on the internal structure of planets, and can be sensed by pressure sensors onboard high-altitude balloons. To identify the various contributions (infrasound signal, noise, balloon response, etc.) in such pressure records, a full waveform modeling is implemented and completed by infrasound ray tracing and additional data analysis. Here, we analyze the Stratéole-2 pressure data associated with two earthquakes (Garcia et al. Geophys. Res. Lett. 49(15):e98844, 2022) and compared these to full waveform simulations by SPECFEM2D-DG-LNS software. Even if our simulations do not precisely reproduce the waveform observed in the frequency range [0.05, 0.3] Hz, we show that the waveform presents more sensitivity to quake and internal structure parameters than to atmospheric structure, and that seismic surface wave dispersion is observed in balloon pressure records. The long-duration pressure oscillations observed after the main infrasonic signal cannot be fully reproduced by our one-dimensional input model even when source time function complexity and aftershocks are considered. These features are ascribed mainly to the complex vertical ground movements below the balloon and partly to late secondary infrasound arrivals excited by the interactions of seismic waves with the topography. These results enhance the advantages and limitations of quake-related infrasound observations on board terrestrial and planetary balloon platforms. Graphical Abstract

Funder

CNES

Region Occitanie

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3