New GEONET analysis strategy at GSI: daily coordinates of over 1300 GNSS CORS in Japan throughout the last quarter century

Author:

Takamatsu NaofumiORCID,Muramatsu Hiroki,Abe Satoshi,Hatanaka Yuki,Furuya Tomoaki,Kakiage Yasuaki,Ohashi Kazuyuki,Kato Chiaki,Ohno Keitaro,Kawamoto Satoshi

Abstract

AbstractThe station coordinates derived from GNSS (Global Navigation Satellite System) with a conventional static method underpin the study of Earth and planetary science and surveying and mapping. For the continuous provision of high-quality coordinates, it is mandatory to cope with the increasing deviation from the global standard reference frame and the launch of modern GPS (Global Positioning System) satellites. To provide coordinates agreed with ITRF2014 (International Terrestrial Reference Frame 2014) at several millimeters for GEONET (GNSS Earth Observation Network System) in Japan, we developed a new analysis strategy named F5 and assessed the reprocessed station coordinates from 1996. The major updates in F5 can be summarized as incorporating global network processing and enhancements in troposphere modeling. As for the troposphere enhancements, a modern mapping function VMF1 (Vienna Mapping Functions 1) was employed and time intervals for troposphere estimates were shortened. Station coordinates in the global network showed a great agreement with ITRF2014 at several millimeters in the recent 20 years and comparable or slightly better performance with IGS (International GNSS Services) Analysis Centers. The RMS (root mean square) averaged over all GEONET stations indicated very high accuracy of 3.2 mm (horizontal) and 7.3 mm (vertical); the latter accounts for an improvement of roughly 10% from the previous strategy. Sensitivity tests about troposphere estimates revealed that the reduced RMS was completely due to the short time intervals, not the use of VMF1, which contributed to partly suppressing the spurious vertical annual deformation. These results confirm that F5 is sufficiently accurate for the requirements of individual applications and infer the capability of detecting smaller signals the previous strategy could not resolve.Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3