Geomagnetic paleointensity dating of mid-ocean ridge basalts from the neo-volcanic zone of the Central Indian Ridge

Author:

Yoshimura YutakaORCID,Fujii MasakazuORCID

Abstract

AbstractDescribing the evolution of the neo-volcanic zone in the spreading ridge is essential for understanding the dynamics and environments of abyssal basins. However, the absolute dating of ocean floor basalts is generally difficult. As a characteristic age indicator, absolute intensity of past geomagnetic field (absolute paleointensity, API) is useful to date ocean floor basalts. In this study, we adopted the Tsunakawa–Shaw method to measure APIs of whole-rock seafloor basalts collected from a conical cone on the Central Indian Ridge and performed rock magnetic experiments. We conducted the experiments on a total of 18 specimens (two or three specimens from each of eight lava sites). Six specimens from two lava sites with different morphologies (pillow and sheet), three for each, passed the acceptance criteria. API means at site level are 33.0 ± 1.0 and 35.8 ± 1.7 μT, respectively. The similarity of API site means suggests that they erupted within a short period. These site-level API means are approximately 0.7 to 0.8 times the present geomagnetic intensity of 46.0 μT at the sampling sites. The accepted specimens show higher Curie temperature, lower initial intensity of natural remanent magnetization, higher ratio of saturation remanence to saturation magnetization (Mrs/Ms), and signal of harder magnetic mineral than rejected ones. Our primary comparison between the two site-level API means and the 1590–present high-resolution IGRF-13 + gufm1 model constrains that the eruption timing of the conical cone to be < 1590 CE. When we compared the two site-level API means with the paleointensity curves calculated from the BIGMUDI4k.1 and ArchKalmag14 k.r, we found that they overlap in the period of − 7575 to −1675 CE or − 25 to 1590 CE, which may be the eruption timing of the conical cone. We concluded that timing of recent volcanic eruption in abyssal environment could be investigated by using appropriate rock magnetic selection and carefully examined API. Graphical Abstract

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3