Quantitative relationship between plume emission and multiple deflations after the 2014 phreatic eruption at Ontake volcano, Japan

Author:

Narita ShoheiORCID,Murakami Makoto,Tanaka Ryo

Abstract

Abstract The phreatic eruption of Mount Ontake in 2014 caused local-scale subsidence and a mass discharge of water–vapor plumes from vents. A previous study of InSAR data analysis modeled the local subsidence as a deflation of a shallow hydrothermal reservoir (~ 500 m beneath the vents), and speculated that it was associated with plume emission continuing just after the eruption. In addition, combination of the InSAR and GNSS data implies that another, deeper deflation source (~ 3–6 km beneath the vents) contributes to the baseline contraction of the GNSS data. In this study, we estimated daily mass flux of the emitting plumes using photographed images, and compared the temporal behavior of the discharged mass with that of deflation of the two sources in order to clarify their association. The temporal profiles of the shallow deflation volume and the discharge mass both show evidence of decay, but with different characteristics; the deflation volume progress was approximated by a single exponential decay with a long relaxation time (379–641 days), whereas the discharge mass displayed a sum of a linear trend and an exponential decay with shorter relaxation time (47 days). This discrepancy, along with GNSS data, suggests the contribution of a deep deflation source with a short relaxation time (20–40 days). Estimation of mass balance between the emitting plume and fluids discharged from both shallow and deep sources revealed that more than 70% of the discharged mass came from the deep source. Based on the estimated mass balance, phase state of the shallow reservoir was estimated as a single-phase, liquid-rich reservoir. The fast decay of the deep deflation may reflect rapid depressurization due to violent fluid discharge at the onset of the eruption. In contrast, the slow decay of the shallow deflation suggests that it had a minor role in the eruption. However, such a wet reservoir has the potential to induce volcanic hazard such as snow-melting lahar for future eruptions, requiring monitoring the volcano, which will probably shift to pre-eruptive re-pressurized phase, until the future eruption.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3