Excitation of airwaves by bubble bursting in suspensions : regime transitions and implications for basaltic volcanic eruptions

Author:

Hashimoto Kana,Sumita IkuroORCID

Abstract

AbstractBasaltic magma becomes more viscous, solid-like (elastic), and non-Newtonian (shear-thinning, non-zero yield stress) as its crystal content increases. However, the rheological effects on bubble bursting and airwave excitation are poorly understood. Here we conduct laboratory experiments to investigate these effects by injecting a bubble of volume V into a refractive index-matched suspension consisting of non-Brownian particles (volumetric fraction $$\phi$$ ϕ ) and a Newtonian liquid. We show that depending on $$\phi$$ ϕ and V, airwaves with diverse waveforms are excited, covering a frequency band of $$f = {\mathcal {O}}(10-10^4)$$ f = O ( 10 - 10 4 ) Hz. In a suspension of $$\phi \le 0.3$$ ϕ 0.3 or in a suspension of $$\phi = 0.4$$ ϕ = 0.4 with a V smaller than critical, the bubble bursts after it forms a hemispherical cap at the surface and excites a high-frequency (HF) wave ($$f \sim 1-2 \times 10^4$$ f 1 - 2 × 10 4 Hz) with an irregular waveform, which likely originates from film vibration. However, in a suspension of $$\phi = 0.4$$ ϕ = 0.4 and with a V larger than critical, the bubble bursts as soon as it protrudes above the surface, and its aperture opens slowly, exciting Helmholtz resonance with $$f = {\mathcal {O}}(10^3)$$ f = O ( 10 3 ) Hz. Superimposed on the waveform are an HF wave component excited upon bursting and a low-frequency ($$f = {\mathcal {O}}(10)$$ f = O ( 10 ) Hz) air flow vented from the deflating bubble, which becomes dominant at a large V. We interpret this transition as a result of the bubble film of a solid-like $$\phi = 0.4$$ ϕ = 0.4 suspension, being stretched faster than the critical strain rate such that it bursts by brittle failure. When the Helmholtz resonance is excited by a bursting bubble in a suspension whose surface level is further below the conduit rim, an air column (length L) resonance is triggered. For L larger than critical, the air column resonance continues longer than the Helmholtz resonance because the decay rate of the former becomes less than that of the latter. The experiments suggest that a bubble bursting at basaltic volcanoes commonly excites HF wave by film vibration. The Helmholtz resonance is likely to be excited under a limited condition, but if detected, it may be used to track the change of magma rheology or bubble V, where the V can be estimated from its frequency and decay rate.

Funder

Japan Society for the Promotion of Science

Sasakawa Scientific Research Grant

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3