Source constraints for the 2015 phreatic eruption of Hakone volcano, Japan, based on geological analysis and resistivity structure

Author:

Mannen KazutakaORCID,Tanada Toshikazu,Jomori Akira,Akatsuka Takashi,Kikugawa George,Fukazawa Yui,Yamashita Hiroyuki,Fujimoto KoichiroORCID

Abstract

AbstractOn June 29, 2015, a small phreatic eruption occurred in the most intensively steaming area of Hakone volcano, Japan. A previous magnetotelluric survey for the whole volcano revealed that the eruption center area (ECA) was located near the apex of a bell-shaped conductive body (resistivity < 10 Ωm) beneath the volcano. We performed local, high-resolution magnetotelluric surveys focusing on the ECA before and after the eruption. The results from these, combined with our geological analysis of samples obtained from a steam well (500 m deep) in the ECA, revealed that the conductive body contained smectite. Beneath the ECA, however, the conductive body intercalated a very local resistive body located at a depth of approximately 150 m. This resistive body is considered a vapor pocket. For the 2 months prior to eruption, a highly localized uplift of the ECA had been observed via satellite InSAR. The calculated depth of the inflation source was coincident with that of the vapor pocket, implying that enhanced vapor flux during the precursory unrest increased the porosity and vapor content in the vapor pocket. In fact, our magnetotelluric survey indicated that the vapor pocket became inflated after the eruption. The layer overlaying the vapor pocket was characterized by the formation of various altered minerals, and mineral precipitation within the veins and cracks in the layer was considered to have formed a self-sealing zone. From the mineral assemblage, we conclude that the product of the 2015 eruption originated from the self-sealing zone. The 2015 eruption is thus considered a rupture of the vapor pocket only 150 m below the surface. Even though the eruption appeared to have been triggered by the formation of a considerably deeper crack, as implied by the ground deformation, no geothermal fluid or rocks from significantly deeper than 150 m were erupted.

Funder

NIED

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3