Improving the accuracy of polar motion prediction using a hybrid least squares and long short-term memory model

Author:

Wang Chenxiang,Zhang Pengfei

Abstract

AbstractEarth rotation parameters (ERPs) are essential for transforming between the celestial and terrestrial reference frames, and for high-precision space navigation and positioning. Among the ERPs, polar motion (PM) is a critical parameter for analyzing and understanding the dynamic interaction between the solid Earth, atmosphere, ocean, and other geophysical fluids. Traditional methods for predicting the change in ERPs rely heavily on linear models, such as the least squares (LS) and the autoregressive (AR) model (LS + AR). However, variations in ERP partly reflect non-linear effects in the Earth system, such that the predictive accuracy of linear models is not always optimal. In this paper, long short-term memory (LSTM), a non-linear neural network, is employed to improve the prediction of ERPs. Polar motion prediction experiments in this study are conducted using the LSTM model and a hybrid method LS + LSTM model based on the IERS EOP14C04 time series. Compared with Bulletin A, the PMX and PMY prediction accuracy can reach a maximum of 33.7% and 31.9%, respectively, with the LS + LSTM model. The experimental results show that the proposed hybrid model displays a better performance in mid- and long-term (120–365 days) prediction of polar motion. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3