Abstract
AbstractThe response of equatorial ionosphere–thermosphere system to the X3.8 solar flare of January 17, 2005 has been studied using the coordinated measurements of GPS-derived Total Electron Content (TEC), OI 630.0 nm dayglow and magnetic field measurements over a dip equatorial station Trivandrum (8.5° N, 77° E, dip 0.5° N), in India. It has been observed that Equatorial Electrojet (EEJ) as inferred using the ground-based magnetometers and GPS-derived TEC measurements show prompt enhancements during the peak flare, as expected. Interestingly, the temporal evolution of TEC at different latitudes revealed that the X3.8 class flare produced significant weakening of the plasma fountain and hence in the Equatorial Ionization Anomaly (EIA). Furthermore, the response of OI 630.0 nm dayglow during the flare is found to be strongly affected by the prevailing electrodynamics. The plausible physical mechanism for these effects is discussed in context of the current understanding of the neutral and electrodynamical coupling processes.
Funder
Indian Space Research Organisation
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Geology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献