Estimation of the emission altitude of pulsating aurora using the five-wavelength photometer

Author:

Kawamura YukiORCID,Hosokawa Keisuke,Nozawa Satonori,Ogawa Yasunobu,Kawabata Tetsuya,Oyama Shin-Ichiro,Miyoshi Yoshizumi,Kurita Satoshi,Fujii Ryoichi

Abstract

AbstractUsing a ground-based five-wavelength photometer, which has been operative in Tromsø, Norway since February 2017, we have statistically analyzed the lifetime of O(1S) to reveal the emission altitude of pulsating aurora (PsA). For the statistics, we have extracted intervals of PsA using an EMCCD all-sky imager on 37 nights during 3 months from January to March, 2018. By performing a cross-correlation analysis between the time-series of 427.8 nm (N2+ first negative band) and 557.7 nm oxygen emissions, we derived the distribution of the lifetime of O(1S). The mean of the lifetime is 0.67 s and the mode is around 0.7 s. We estimated the emission altitude of PsA using the lifetime of O(1S) and then carried out a case study, in which we compared the temporal variations of the emission altitude with the peak height of E region ionization obtained from the simultaneous observation of the EISCAT UHF radar. We confirmed an overall agreement between the two parameters, indicating the feasibility of using the current method for estimating the energy of precipitating electrons causing PsA. In addition, we have derived the statistical characteristics of the emission altitude of PsA. The result shows that the emission altitude becomes lower in the morning side than in the midnight sector, which indicates that the energy of PsA electrons is higher in the later MLT sector. Especially, there is a decrease of the emission altitude at around 06 MLT. However, the model calculation infers that the energy of cyclotron resonance between magnetospheric electrons and whistler-mode chorus waves does not change so much depending on MLT. This implies that the observed change of the emission altitude cannot be explained only by the MLT dependence of resonance energy.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3