Magmatic–hydrothermal system of Aso Volcano, Japan, inferred from electrical resistivity structures

Author:

Matsushima Nobuo,Utsugi Mitsuru,Takakura Shinichi,Yamasaki Tadashi,Hata Maki,Hashimoto Takeshi,Uyeshima Makoto

Abstract

AbstractWe investigated the magmatic–hydrothermal system of Aso Volcano, Japan, using broadband magnetotelluric (MT) data. To establish the nature of the shallow crust, a previous resistivity model based on data from 100 measurement sites in and around Aso volcano was revised using data from 9 additional sites near Naka-dake crater, which is located in the central part of the volcano. The components of MT impedance and the tipper vector were used to obtain the resistivity structure by three-dimensional inversion. The resistivity structure shows a subvertical low-resistivity (< 1 Ωm) column-shaped body beneath Naka-dake crater that extends from − 600 m to 10 km below sea level (BSL) and dips steeply to the north-northeast. The position of the upper part of the column is displaced eastward compared with the previous model and does not overlap the position of the presumed magma reservoir inferred previously from seismic and geodetic observations underneath the western side of Naka-dake crater at a depth of 5 km. We interpret this low-resistivity column to be a magmatic–hydrothermal system composed of brine and magma that were transported to Naka-dake crater from the main deep-seated magma reservoir. A horizontal low-resistivity (< 10 Ωm) layer occurs beneath post-caldera cones at the depths of 0–2 km BSL, and this layer extends laterally from the upper part of the low-resistivity column. We interpret this low-resistivity layer as representing a shallow hydrothermal system that has developed around the central column-shaped magmatic–hydrothermal system.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3